The information contained in this ICSI Health Care Guideline is intended primarily for health professionals and the following expert audiences:

- physicians, nurses, and other health care professional and provider organizations;
- health plans, health systems, health care organizations, hospitals and integrated health care delivery systems;
- health care teaching institutions;
- health care information technology departments;
- medical specialty and professional societies;
- researchers;
- federal, state and local government health care policy makers and specialists; and
- employee benefit managers.

This ICSI Health Care Guideline should not be construed as medical advice or medical opinion related to any specific facts or circumstances. If you are not one of the expert audiences listed above you are urged to consult a health care professional regarding your own situation and any specific medical questions you may have. In addition, you should seek assistance from a health care professional in interpreting this ICSI Health Care Guideline and applying it in your individual case.

This ICSI Health Care Guideline is designed to assist clinicians by providing an analytical framework for the evaluation and treatment of patients, and is not intended either to replace a clinician's judgment or to establish a protocol for all patients with a particular condition. An ICSI Health Care Guideline rarely will establish the only approach to a problem.

Copies of this ICSI Health Care Guideline may be distributed by any organization to the organization's employees but, except as provided below, may not be distributed outside of the organization without the prior written consent of the Institute for Clinical Systems Improvement, Inc. If the organization is a legally constituted medical group, the ICSI Health Care Guideline may be used by the medical group in any of the following ways:

- copies may be provided to anyone involved in the medical group's process for developing and implementing clinical guidelines;
- the ICSI Health Care Guideline may be adopted or adapted for use within the medical group only, provided that ICSI receives appropriate attribution on all written or electronic documents; and
- copies may be provided to patients and the clinicians who manage their care, if the ICSI Health Care Guideline is incorporated into the medical group's clinical guideline program.

All other copyright rights in this ICSI Health Care Guideline are reserved by the Institute for Clinical Systems Improvement. The Institute for Clinical Systems Improvement assumes no liability for any adaptations or revisions or modifications made to this ICSI Health Care Guideline.
<table>
<thead>
<tr>
<th>Event</th>
<th>Screening Maneuvers</th>
<th>Counseling Education Intervention</th>
<th>Immunization & Chemoprophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit 1</td>
<td>Preconception Visit</td>
<td>Preterm labor education and prevention</td>
<td>Tetanus booster 27</td>
</tr>
<tr>
<td>6-8 weeks **</td>
<td>Risk profile 4</td>
<td>Nutrition and weight</td>
<td>Nutritional supplements 25</td>
</tr>
<tr>
<td></td>
<td>Blood pressure, BMI</td>
<td>Physical activity</td>
<td>Pertussis 2</td>
</tr>
<tr>
<td></td>
<td>Height and weight</td>
<td>Follow-up of modifiable risk factors</td>
<td>Hepatitis B vaccine 26</td>
</tr>
<tr>
<td></td>
<td>Cholesterol & HDL</td>
<td>Breastfeeding</td>
<td>Varicella/ VARIZIG 9</td>
</tr>
<tr>
<td></td>
<td>Cervical cancer screening</td>
<td>Physiological pregnancy</td>
<td>Physical examination for pregnancy</td>
</tr>
<tr>
<td></td>
<td>Domestic violence</td>
<td>Course of care</td>
<td>Pregnancy and labor education</td>
</tr>
<tr>
<td></td>
<td>Blood pressure</td>
<td>• Fetal growth</td>
<td>• Guidance in breastfeeding</td>
</tr>
<tr>
<td></td>
<td>Fetal heart tones</td>
<td>• Review labs from visit 1</td>
<td>• Nutrition and weight</td>
</tr>
<tr>
<td></td>
<td>Fundal height 30</td>
<td>• Breastfeeding education</td>
<td>• Family issues</td>
</tr>
<tr>
<td></td>
<td>OB Ultrasound</td>
<td>■ Classes</td>
<td>■ Length of stay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Warning signs</td>
<td>■ Gestational diabetes mellitus (GDM)</td>
</tr>
<tr>
<td>Visit 3</td>
<td>Visit 2</td>
<td>Preterm labor education and prevention</td>
<td>Pertussis 27</td>
</tr>
<tr>
<td>16-18 weeks</td>
<td>Risk profile 4</td>
<td>Fetal growth</td>
<td>Tetanus booster 27</td>
</tr>
<tr>
<td></td>
<td>Blood pressure, BMI</td>
<td>Second-trimester growth</td>
<td>Varicella/ VARIZIG 9</td>
</tr>
<tr>
<td></td>
<td>Height and weight</td>
<td>Quickening</td>
<td>Physical examination for pregnancy</td>
</tr>
<tr>
<td></td>
<td>Cholesterol & HDL</td>
<td>Follow-up of modifiable risk factors</td>
<td>Pregnancy and labor education</td>
</tr>
<tr>
<td></td>
<td>Cervical cancer screening</td>
<td>Classes</td>
<td>• Guidance in breastfeeding</td>
</tr>
<tr>
<td></td>
<td>Domestic violence</td>
<td>Family issues</td>
<td>• Nutrition and weight</td>
</tr>
<tr>
<td></td>
<td>Blood pressure</td>
<td>Length of stay</td>
<td>■ Gestational diabetes mellitus (GDM)</td>
</tr>
<tr>
<td></td>
<td>Fetal heart tones</td>
<td>Gestational diabetes mellitus (GDM)</td>
<td>Pertussis 2</td>
</tr>
<tr>
<td></td>
<td>Fundal height 30</td>
<td></td>
<td>"Progam 17"</td>
</tr>
<tr>
<td>Visit 4</td>
<td>Visit 5</td>
<td>Preterm labor education and prevention</td>
<td>Pertussis 27</td>
</tr>
<tr>
<td>22 weeks</td>
<td>Weight</td>
<td>Fetal growth</td>
<td>Varicella/ VARIZIG 9</td>
</tr>
<tr>
<td></td>
<td>Blood pressure</td>
<td>Second-trimester growth</td>
<td>Physical examination for pregnancy</td>
</tr>
<tr>
<td></td>
<td>Fetal heart tones</td>
<td>Quickening</td>
<td>Pregnancy and labor education</td>
</tr>
<tr>
<td></td>
<td>Fundal height 30</td>
<td>Classes</td>
<td>■ Guidance in breastfeeding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family issues</td>
<td>• Nutrition and weight</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Length of stay</td>
<td>■ Gestational diabetes mellitus (GDM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gestational diabetes mellitus (GDM)</td>
<td>Pertussis 2</td>
</tr>
</tbody>
</table>

Numbers refer to specific annotations.
[Bracketed] items refer to high-risk groups only.
* It is acceptable for the history and physical and laboratory tests listed under Visit 1 to be deferred to Visit 2 with the agreement of both the patient and the provider.
** Should also include all subjects listed for the preconception visit if none occurred.

Return to Table of Contents
Routine Prenatal Care

Annotation Table

Fourteenth Edition/July 2010

Numbers refer to specific annotations. [Bracketed] items refer to high-risk groups only.

Event

<table>
<thead>
<tr>
<th>Visit 8-11</th>
<th>38-41 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit 5</td>
<td>28 weeks</td>
</tr>
<tr>
<td>Visit 6</td>
<td>32 weeks</td>
</tr>
<tr>
<td>Visit 7</td>
<td>36 weeks</td>
</tr>
<tr>
<td>Event</td>
<td>Screening Maneuvers</td>
</tr>
<tr>
<td></td>
<td>Counseling & Education</td>
</tr>
<tr>
<td></td>
<td>Intervention</td>
</tr>
<tr>
<td></td>
<td>Immunization & Chemoprophylaxis</td>
</tr>
</tbody>
</table>

Screening Maneuvers

- Weight 5
- Blood pressure 6
- Fetal heart tones 28
- Fundal height 30
- Cervix exam 34
- Confirm fetal position 35
- Culture for group B streptococcus 36

Counseling & Education

- Psychosocial risk factors 4
- Preterm labor education and prevention 12
- Prenatal & lifestyle education 23
- Follow-up modifiable risk factors 10
- Management of late pregnancy symptoms 11
- Contraception 12
- traveler 12
- Contraception 12
- Pediatr: care 12
- Episiotomy 12

Intervention

- Awareness of fetal movement 33
- Warning signs/pregnancy-induced hypertension [VBAC 22]

Immunization & Chemoprophylaxis

- [ABO/Rh/Ab 17]
- [RhOCAM 17]

Text in blue throughout the document provides links.
Topical Index

<table>
<thead>
<tr>
<th>Component</th>
<th>Related Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABO/Rh/Ab</td>
<td>27</td>
</tr>
<tr>
<td>Aneuploidy Screening</td>
<td>35</td>
</tr>
<tr>
<td>Bariatric Surgery</td>
<td>19</td>
</tr>
<tr>
<td>Blood Lead Screening</td>
<td>29</td>
</tr>
<tr>
<td>Blood Pressure</td>
<td>20</td>
</tr>
<tr>
<td>Breastfeeding</td>
<td>33</td>
</tr>
<tr>
<td>Complete Blood Count (CBC)</td>
<td>26</td>
</tr>
<tr>
<td>Cervical Cancer Screening (Pap Test)</td>
<td>9</td>
</tr>
<tr>
<td>Cervix Exam</td>
<td>48</td>
</tr>
<tr>
<td>Cervical Assessment for Preterm Delivery</td>
<td>25</td>
</tr>
<tr>
<td>Cholesterol and HDL</td>
<td>9</td>
</tr>
<tr>
<td>Depression</td>
<td>23</td>
</tr>
<tr>
<td>Domestic Violence</td>
<td>22</td>
</tr>
<tr>
<td>Fetal Heart Tones</td>
<td>44</td>
</tr>
<tr>
<td>Fetal Movement</td>
<td>47</td>
</tr>
<tr>
<td>Fetal Position</td>
<td>48</td>
</tr>
<tr>
<td>Folic Acid</td>
<td>25</td>
</tr>
<tr>
<td>Fundal Height</td>
<td>45</td>
</tr>
<tr>
<td>GC/Chlamydia</td>
<td>14</td>
</tr>
<tr>
<td>Genetic Risks</td>
<td>16</td>
</tr>
<tr>
<td>Gestational Diabetes Mellitus (GDM)</td>
<td>11, 46</td>
</tr>
<tr>
<td>Group B Streptococcus</td>
<td>48</td>
</tr>
<tr>
<td>Height/Weight/BMI</td>
<td>19</td>
</tr>
<tr>
<td>Hepatitis (Viral)</td>
<td>42</td>
</tr>
<tr>
<td>Herpes Simplex Virus (HSV)</td>
<td>15</td>
</tr>
<tr>
<td>History and Physical</td>
<td>21</td>
</tr>
<tr>
<td>HIV</td>
<td>28</td>
</tr>
<tr>
<td>Immunizations</td>
<td>43</td>
</tr>
<tr>
<td>Influenza</td>
<td>43</td>
</tr>
<tr>
<td>Medications</td>
<td>25</td>
</tr>
<tr>
<td>Menstrual Dates</td>
<td>25</td>
</tr>
<tr>
<td>Nausea/Vomiting</td>
<td>32</td>
</tr>
<tr>
<td>Nutrition</td>
<td>9, 10</td>
</tr>
<tr>
<td>Nutritional Supplements</td>
<td>41</td>
</tr>
<tr>
<td>Pap Test</td>
<td>9</td>
</tr>
<tr>
<td>Peridontal Disease</td>
<td>15</td>
</tr>
<tr>
<td>Pertussis</td>
<td>43</td>
</tr>
<tr>
<td>Prenatal Education</td>
<td>31</td>
</tr>
<tr>
<td>Preterm Labor</td>
<td>23</td>
</tr>
<tr>
<td>Progesterone</td>
<td>45</td>
</tr>
<tr>
<td>Rh Antibody Status</td>
<td>27</td>
</tr>
<tr>
<td>RhOGAM</td>
<td>27</td>
</tr>
<tr>
<td>Risk Profiles</td>
<td>9</td>
</tr>
<tr>
<td>Rubella/Rubeola</td>
<td>21</td>
</tr>
<tr>
<td>Spina Bifida</td>
<td>35</td>
</tr>
<tr>
<td>Substance Use</td>
<td>9, 13</td>
</tr>
<tr>
<td>Supplements and Vitamins</td>
<td>41</td>
</tr>
<tr>
<td>Syphillis</td>
<td>27</td>
</tr>
<tr>
<td>Tetanus</td>
<td>43</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>14</td>
</tr>
<tr>
<td>Ultrasound</td>
<td>44</td>
</tr>
<tr>
<td>Urine Culture</td>
<td>28</td>
</tr>
<tr>
<td>Vaginal Birth After Caesarean (VBAC)</td>
<td>29</td>
</tr>
<tr>
<td>Varicella</td>
<td>22</td>
</tr>
<tr>
<td>Weight</td>
<td>19</td>
</tr>
</tbody>
</table>

Return to Table of Contents
Table of Contents

Work Group Leader
Dale Akkerman, MD
Ob/Gyn, Park Nicollet Health Services

Work Group Members
Family Medicine
Kari Rabie, MD
Southside Community Health Services

Carol Stark, MD
Family Health Services Minnesota

Maternal-Fetal Medicine
Carl Rose, MD
Mayo Clinic

Nurse Midwifery
Georgeanne Croft, CNM
HealthPartners Medical Group

Anna Levine, CNM
Park Nicollet Health Services

Ob/Gyn
John Vickers, MD
HealthPartners Medical Group

Ob/Gyn Nursing
Dawn Bowker, NP
Obstetrics and Gynecology Associates, P. A.

Corinne Esch, RN, CDS
HealthPartners Medical Group

Facilitators
Carmen Hansen, BSN
ICSI

Linda Setterlund, MA, CPHQ
ICSI

Algorithms and Annotations
1-66

Annotation Tables ... 1-2

Index .. 3

Foreword

Scope and Target Population.. 5

Clinical Highlights and Recommendations ... 5

Priority Aims ... 5

Key Implementation Recommendations ... 6

Related ICSI Scientific Documents ... 6

Disclosure of Potential Conflict of Interest ... 6

Introduction to ICSI Document Development 7

Description of Evidence Grading ... 7

Annotations .. 8-52

Appendices .. 53-66

Appendix A – Preconception Risk Assessment Form 53

Appendix B – Workplace Environment/Lifestyle Risk Assessment Form ... 54

Appendix C – Infectious Diseases in Pregnancy Screening Form 55

Appendix D – Prenatal Genetic Risk Assessment Form 56

Appendix E – Prenatal Record .. 57-62

Appendix F – Blood Lead Screening Guidelines for Pregnant Women in Minnesota ... 63-64

Appendix G – Perinatal Hepatitis B Prevention Program 65-66

Supporting Evidence ... 67-89

Brief Description of Evidence Grading ... 68

References .. 69-86

Conclusion Grading Worksheets ... 87-89

Conclusion Grading Worksheet A – Annotation #24
(Fetal Aneuploidy Screening) .. 87-89

Support for Implementation ... 90-97

Priority Aims and Suggested Measures .. 91

Measurement Specifications .. 92-94

Key Implementation Recommendations .. 95

Knowledge Resources .. 95

Resources Available .. 96-97
Foreword

Scope and Target Population

This guideline pertains to the care of all women who are pregnant or are considering pregnancy. All visits are outpatient/clinic based. (See the ICSI Management of Labor guideline for hospital-based care.)

Return to Table of Contents

Clinical Highlights and Recommendations

• Identify patients with greater potential for high-risk pregnancy and provide appropriate preconception counseling. (Annotation #4, Aim #1)

• Each pregnant patient and each patient planning a pregnancy should receive a comprehensive risk assessment and appropriate risk-related interventions, including risks for preterm labor, relevant infectious diseases, and relevant genetic disorders. (Annotations #2, 4; Aim #5)

• Each pregnant patient should receive visit-specific screening tests, education, immunizations and chemoprophylaxis as described in the schedule of prenatal visits. (Annotation #1; Aim #2)

• Each pregnant patient should be counseled regarding the limitations and benefits of each aneuploidy test and offered the screening and diagnostic tests. (Annotation #24; Aim #3)

• For patients with previous Caesarean section, provide education of risks and benefits associated with vaginal birth after Caesarean (VBAC). Assess and document patient's desire and appropriateness for VBAC. (Annotation #22; Aim #4)

Priority Aims

1. Increase the percentage of pregnant women who receive timely, comprehensive screens for risk factors. (Annotation #4)

2. Increase the percentage of pregnant women who receive timely prenatal counseling and education as outlined in the guideline. (Annotations #4, 12)

3. Increase the number of first-trimester patients who have documentation of counseling about appropriate aneuploidy screening. (Annotation #24)

4. Increase the percentage of VBAC-eligible women who receive documented education describing risks and benefits of VBAC. (Annotation #22)

5. Increase the rate of appropriate interventions for identified change in status in women with preterm birth (PTB) risk factors. (Annotations #4, 12)

Return to Table of Contents
Key Implementation Recommendations

The following system changes were identified by the guideline work group as key strategies for health care systems to incorporate in support of the implementation of this guideline.

1. Use of simple prenatal forms and checklists can provide an inexpensive and effective means of improving implementation of periodic health maintenance and increase the likelihood that providers will put clinical evidence into practice.

2. Use of electronic medical records for computer-generated reminders can significantly improve provider acceptance and implementation of these recommendations.

(Cheney, 1987 [A]; Kirkham, 2005a [R])

Related ICSI Scientific Documents

Guidelines
- Immunizations
- Management of Labor Guideline and Order Set
- Prevention and Management of Obesity
- Preventive Services for Adults

Disclosure of Potential Conflict of Interest

ICSI has adopted a policy of transparency, disclosing potential conflict and competing interests of all individuals who participate in the development, revision and approval of ICSI documents (guidelines, order sets and protocols). This applies to all work groups (guidelines, order sets and protocols) and committees.

Participants must disclose any potential conflict and competing interests they or their dependents (spouse, dependent children, or others claimed as dependents) may have with any organization with commercial, proprietary, or political interests relevant to the topics covered by ICSI documents. Such disclosures will be shared with all individuals who prepare, review and approve ICSI documents.

Carl Rose, MD has received research and grant funding from Sequenom for the study of fetal DNA. All funds were paid to Mayo Clinic.

Dawn Bowker, RN has received payment for a public education campaign with Boehringer Ingelheim Pharmaceuticals.

No other work group members have potential conflicts of interest to disclose.
Introduction to ICSI Document Development

This document was developed and/or revised by a multidisciplinary work group utilizing a defined process for literature search and review, document development and revision, as well as obtaining input from and responding to ICSI members.

Evidence Grading System

A. Primary Reports of New Data Collection:
 Class A: Randomized, controlled trial
 Class B: Cohort study
 Class C: Non-randomized trial with concurrent or historical controls
 Case-control study
 Study of sensitivity and specificity of a diagnostic test
 Population-based descriptive study
 Class D: Cross-sectional study
 Case series
 Case report

B. Reports that Synthesize or Reflect upon Collections of Primary Reports:
 Class M: Meta-analysis
 Systematic review
 Decision analysis
 Cost-effectiveness analysis
 Class R: Consensus statement
 Consensus report
 Narrative review
 Class X: Medical opinion

Citations are listed in the guideline utilizing the format of (Author, YYYY [report class]). A full explanation of ICSI's Evidence Grading System can be found at http://www.icsi.org.

Return to Table of Contents
1. **Number of Prenatal Visits**

Prenatal visits are organized as described in the table on the cover of this guideline. All prenatal visits, including the preconception visit, are organized to include:

- screening and assessment maneuvers;
- counseling, education and intervention; and
- immunization and chemoprophylaxis.

In 1989, the Expert Panel on the Content of Prenatal Care established guidelines on the timing and content of prenatal care, including a schedule consisting of fewer prenatal visits than traditional models provided. This reduced schedule of visits applied to women considered at low risk of adverse perinatal outcomes. Timing and focusing prenatal visits at these intervals, along with providing designated education pieces at each visit, should serve to provide a more comprehensive and satisfying prenatal program than has existed in the past (*American College of Obstetrics and Gynecologists, 1989 [R]; Public Health Service Expert Panel, 1989 [R]*).

The overall utility of prenatal care as a series of visits conducted from the time of conception through parturition has been well established. However, as Huntington and Connell have stated, "The evidence that prenatal care pays for itself is simply not strong enough to merit the virtual certainty with which this claim has been espoused" (*Huntington, 1994 [R]*). As the United Kingdom's Royal College of Obstetrics and Gynecology has described, both the individual components and overall package of prenatal care should conform to criteria for any successful health-screening program. In particular, the work group stresses the following points:

- The condition being screened for is an important health problem.
- The screening test, assessment or treatment is safe and acceptable.
- The natural history of the condition is understood.
- Early detection and treatment have benefit over later detection and treatment.
- The screening test, assessment or treatment is valid and reliable.
- There are adequate facilities for testing and resources for treatment.
- The objectives of screening justify the costs.

(*National Collaborating Centre for Women's and Children's Health, RCOG Press, 2003 [R]*)

Alternative prenatal care schedules for women at low risk for adverse perinatal outcomes have been shown to deliver equivalent outcomes of preterm delivery, preeclampsia, Caesarean delivery, low birth weight, and patient satisfaction rates. The research in this area includes the results of a randomized controlled trial. This guideline presents a schedule of visits in keeping with these studies (*Carroli, 2001 [M]; Clement, 1999 [A]; Villar, 2003 [M]*)

2. **Preconception Visit**

A preconception visit is defined as any encounter between a woman of childbearing age and a health care professional for any issue related to possible pregnancy or contraception occurring within 12 months of pregnancy. This includes the following reasons for an encounter:

Return to Annotation Table
• Pregnancy planning or questions
• Fertility problems
• Contraception
• Periodic health assessment (including Pap testing)
• Recent amenorrhea, but pregnancy testing is negative
• Pregnant, but plans to abort pregnancy
• Any visit with gynecologic concerns
• Other encounters that lead the provider to believe the patient is likely to become pregnant soon

An age-appropriate periodic health assessment as described in the ICSI Preventive Services guidelines should be performed. The Preventive Services guidelines should be consulted regarding the indicated frequency of screening, counseling and immunization maneuvers. Patients who have been identified with gestational diabetes in previous pregnancies should have glucose testing.

Preconception discussion should include information about proper nutrition, including preconceptual use of folic acid, ideal body weight, and substance abuse in the preconception period. Obese women should be encouraged to begin a weight reduction program involving diet, exercise and behavior modification. In some cases, bariatric surgery prior to conception also should be discussed (Practice Committee of the American Society for Reproductive Medicine, 2008 [R]; Moos, 2008 [R]).

Pregnant women failing to receive a preconception visit should undergo an age-appropriate periodic health assessment at the first prenatal visit. This would include those screening maneuvers listed in the visit table, with the exception of cholesterol and high-density lipoprotein (HDL).

3. **Expeditious Access to Prenatal Care**

Early confirmation of pregnancy is important because it allows for early intervention to mitigate risk factors. This includes early screening. Consensus of the guideline work group is that confirmation as soon as possible within the first two weeks of provider awareness is an attainable goal for each medical group.

Confirmation may be by pregnancy test or by a combination of history and exam. If the confirmation test is negative, the patient should be treated as a prepregnancy visit.

The clinic visit can be done by a nurse, nurse practitioner, provider or midwife. This may include a pregnancy test, examination or ultrasound for ectopic pregnancy or miscarriage.

4. **Risk Profile Screening**

Risk evaluation at the preconception visit or first prenatal visit should include an evaluation of the following concerns:

A. **Preconception risk** assessment should be completed at all opportunities, followed by preconception counseling, if indicated. (See Appendix A, "Preconception Risk Assessment Form.")

A comprehensive assessment should elicit information from the patient regarding the following:

• Modifiable risk factors for preterm labor
• Work-related exposure to chemicals or infectious agents
• Risk for modifiable infectious diseases
• Hereditary disorders
• Use of prescription or over-the-counter medications
• History of physical, emotional or sexual abuse
• Nutritional adequacy
• Alcohol use
• Tobacco use
• Substance abuse
• Gestational diabetes
• Risk for psychiatric disorder

A brief systematic screening for preterm birth risks should be performed at the preconception visit or the first prenatal visit. Likewise, screening should be congruent with the aims outlined in the ICSI Preventive Services guidelines. Providers should focus on modifiable risk factors, particularly factors that have been shown to be responsive to provider counseling or intervention.

Evidence-based recommendations support provider counseling for tobacco cessation, alcohol use and nutrition. No strong evidence exists against comprehensive counseling and education (Chang, 1998 [C]; Fenster, 1991 [C]; Kirkham, 2005a [R]; Mullen, 1999 [R]).

Alcohol

Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental disability in the western world, with an estimated incidence in North America of 9.1 per 1,000 live births (Tough, 2005 [R]). The prevalence of alcohol use among pregnant women is more than 12%, and even low levels of alcohol use have been related to negative developmental sequelae. Brief intervention is an effective methodology that has been empirically validated in a number of alcohol-related studies (O’Connor, 2007 [B]). Studies suggest that consistent screening for prenatal alcohol use with subsequent assessment result in reduced consumption and thus reduced fetal exposure to alcohol (Chang, 2005 [D]).

Tobacco cessation

Prenatal tobacco cessation programs can be effective in reducing smoking rates in pregnant women and reducing the incidence of low-birth-weight infants. Therefore, smoking cessation should be discussed at each visit. It provides the opportunity to discuss the impact smoking has on her baby and the fact that even reducing the number of cigarettes smoked each day can lower her risks for preterm labor and can positively impact the size of her baby (American College of Obstetricians and Gynecologists, 2005c [R]; Rosenthal, 2006 [R]).

Intervention early in pregnancy – through written materials, education, counseling and a message from provider or midwife – will significantly increase the number of women who stop smoking or reduce the number of cigarettes by more than 50%, thereby reducing the number of low-birth-weight babies. It was also noted that with phone counseling between prenatal visits, there is greater success in smoking cessation (Secker-Walker, 1998 [A]).

If a pregnant patient is clearly not going to stop smoking without the use of nicotine replacement and/or cognitive behavioral therapy, and if there is good reason to believe these substances would facilitate cessation in a particular patient, it is reasonable to inform the patient of potential risks and offer that form of support (Pollack, 2007 [B]; U.S. Preventive Services Task Force, 1996 [R]).
Domestic violence (see Annotation #10)

Domestic violence can occur before, during and after pregnancy. In a population-based survey, prenatal abuse prevalence was 6.1%. A strong, significant association was identified between abuse prior to pregnancy and abuse during pregnancy (Martin, 2001 [C]).

Violence during pregnancy has been associated with miscarriage, late entry into prenatal care, stillbirth, premature labor and birth, fetal injury and low birth weight (The World Report on Violence and Health, 2002 [R]).

Gestational diabetes mellitus (GDM) (see Annotation #32)

Patients who are considered at increased risk for gestational diabetes based on previous pregnancies should be screened with a one-hour glucose test as soon as the patient is confirmed to be pregnant (American Diabetes Association, 2004). Women with a history of GDM have a 33%-50% risk of recurrence, and some of these recurrences may represent unrecognized type 2 diabetes (American College of Obstetricians and Gynecologists, 2001 [R]).

B. At risk for preterm birth?

Preterm labor (PTL) risk includes medical and obstetrical history that might cause a woman to be at high risk for preterm delivery.

The guideline work group acknowledges that some factors are associated with a greater magnitude than others of risk for preterm birth. For example, a history of prior preterm birth or myomectomy or multiple gestation this pregnancy is of particular concern. Existing risk assessment scoring tools have not demonstrated to be reliable predictors of preterm birth. Risk factors associated with preterm birth may include, but are not limited to, the following:

Return to Annotation Table Return to Table of Contents
Risk factors for preterm birth

<table>
<thead>
<tr>
<th>Demographics</th>
<th>History</th>
<th>Lifestyle</th>
<th>Infection/Inflammation</th>
<th>Decidual Hemorrhage</th>
<th>Pathologic Distention of the Uterus</th>
</tr>
</thead>
<tbody>
<tr>
<td>African-American</td>
<td></td>
<td>Cocaine, marijuana, benzodiazapene or other street drug use</td>
<td>Bacterial vaginosis with symptoms</td>
<td>Abdominal surgery this pregnancy</td>
<td>Multiple gestation</td>
</tr>
<tr>
<td>Less than 12th-grade education</td>
<td></td>
<td>Domestic violence</td>
<td>Other systemic infection or febrile illness</td>
<td>Trauma</td>
<td>Polyhydramnios</td>
</tr>
<tr>
<td>Low socioeconomic status</td>
<td></td>
<td>Family or life stress</td>
<td>Periodontal disease</td>
<td>Vaginal bleeding after 12 wks this pregnancy</td>
<td>Uterine anomalies</td>
</tr>
<tr>
<td>Under age 18 or over age 35</td>
<td></td>
<td>Fetal stress, e.g., intrauterine growth retardation</td>
<td>Pyelonephritis or UTI</td>
<td></td>
<td>Uterine fibroids</td>
</tr>
<tr>
<td>Unmarried</td>
<td></td>
<td>Tobacco use</td>
<td>Sexually transmitted infections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uterine irritability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any 2nd-trimester loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervical cerclage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervix dilated more than 1 cm at 32 wks gestation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mental illness e.g., major depression, psychosis, bipolar, schizophrenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prior cone biopsy or LEEP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prior myomectomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prior preterm delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 or more 1st-trimester losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These risk factors for preterm birth are not listed in any particular risk order.
(Goldenberg, 2008 [R])

C. Potential workplace hazards/lifestyle risk assessment

(see Appendix B, "Workplace Environment/Lifestyle Risk Assessment Form")

Health care providers should elicit information from the patient regarding the following:

- Work-related risks for preterm labor
- Work-related exposure to chemicals or infectious agents
- Availability of health care professionals at work for blood pressure (BP) monitoring or rest/observation, if indicated
- Risks to pregnancy from physical requirements of the occupation
• Nutritional adequacy for pregnancy (see Annotation #5, "Height and Weight/Body Mass Index [BMI]," for risks of obese patients)

• Lifestyle risks to pregnancy

• Risk of lead exposure (see Appendix F, "Blood Lead Screening Guidelines for Pregnant Women in Minnesota"). Patients who have levels at or above 10 mcg/dL need further evaluation and management.

Work and pregnancy

Because the majority of pregnant women work outside the home, workplace risk factors should be assessed for all pregnant women.

Employment alone does not appear to increase risks to pregnancy. Rates of preterm delivery, low birth weight, fetal malformation and prenatal mortality are not increased among employed women. In fact, an overall reduced risk of adverse outcomes can be attributed to more favorable demographics and behavioral characteristics among employed women (Berkowitz, 1995 [R]).

Certain working conditions have been associated with increased adverse outcomes of pregnancy, including preterm birth, low birth weight, and pregnancy-induced hypertension. These factors include:

• Working more than 36 hours per week or 10 hours per day
• Heavy lifting
• Excessive noise
• 4 hours standing per shift
• Mental stress
• Cold work environment

(Klebanoff, 1990 [C]; Luke, 1995 [C]; Peoples-Sheps, 1991 [D])

Occupational exposure to toxic chemicals – including anesthetic agents, solvents and pesticides – can increase the risk of miscarriage, malformations and other adverse pregnancy outcomes.

The Council on Scientific Affairs has established guidelines for work in pregnancy (Council on Scientific Affairs, 1984 [R]).

D. Infectious disease risks (see Appendix C, "Infectious Diseases in Pregnancy Screening Form")

Women found to be at high risk for one or more infectious diseases may require additional infectious disease testing at 28 weeks.

• Rubella/varicella immunity status
• Human immunodeficiency virus (HIV) status of patient and partner
• History of sexually transmitted infection (STIs)
• Sexual practices that place patient at increased risk for STIs
• Substance abuse, including intravenous (IV) drug use
• Socioeconomic factors that affect access to medical care and increase likelihood of exposure to infectious disease

(Kirkham, 2005b [R])
Gonorrhea and chlamydia

All women found to be at high risk for sexually transmitted diseases should be screened for *Neisseria gonorrhoeae* and *Chlamydia trachomatis* at a preconception visit or during pregnancy (U.S. Preventive Services Task Force, 2007 [R]). In addition, all sexually active women age 25 or younger should be screened for *C. trachomatis*, regardless of risk status, in keeping with the USPSTF recommendation.

The optimal frequency of screening has not been determined, but due to concerns about reinfection, an additional test in the second trimester is recommended for those at continued risk of acquiring chlamydia (Andrews, 2000 [C]).

Early detection and treatment of gonococcal and chlamydial infection in asymptomatic women offers the potential benefits of preventing future complications of infection. Similarly, early detection and treatment during pregnancy have the potential to reduce morbidity from obstetric complications.

Gonorrhea

The CDC reports that 336,742 new cases of gonorrhea were reported in 2008. The reported prevalence among women at prenatal clinics was 0.0%-3.8% and was up to 7.4% at family planning clinics. Up to 50% of women with gonorrhea are asymptomatic (Centers for Disease Control, 2008 [R]).

Pregnant women with gonococcal infections are at increased risk for obstetric complications (stillbirth, preterm delivery, chorioamnionitis, low birth weight, and intrauterine growth restriction) (Elliott, 1990 [C]).

Ongoing data from the CDC Gonococcal Isolate Surveillance Project (GISP), including preliminary data from 2006, demonstrate that fluoroquinolone resistant gonorrhea is continuing to spread and is now widespread in the U.S. As a consequence, and as reported in MMWR, April 13, 2007, this class of antibiotic is no longer recommended for the treatment of gonorrhea in the U.S. (Centers for Disease Control, 2007 [R]).

Chlamydia

In the United States, chlamydial genital infection is the most frequently reported infectious disease, and the prevalence is highest in individuals age 25 and younger. Several important sequelae can result from *C. trachomatis* infection in women; the most serious of these include PID, ectopic pregnancy and infertility. Some women who have uncomplicated cervical infection already have subclinical upper reproductive tract infection (Centers for Disease Control, 2006a [R]).

Chlamydia infection in pregnancy increases the risk of miscarriage, preterm labor, PROM, preterm birth, low birth weight, neonatal chlamydia infection, infant mortality and endometritis. Neonatal infection can result in ophthalmia neonatorum and pneumonia (U.S. Preventive Services Task Force, 2007 [R]).

Tuberculosis and PPD screening

Purified protein derivatives (PPD) screening of all high-risk mothers at a preconception visit or the first OB visit will identify most women who have old infections or active disease (10% of immunocompetent and 40% of HIV positive patients will have a false-negative test). Follow-up chest x-ray is recommended for recent converters if pulmonary symptoms are present before 12 weeks gestation and in all circumstances after 12 weeks gestation.

Important risk factors include poverty, drug use, HIV, new immigrants from tuberculosis endemic areas, and exposure to proven and suspected tuberculosis (Labil, 2005 [R]).

Reported cases of tuberculosis in the U.S. decreased from 1992 to 2002. However, the number of cases among foreign-born patients has increased (Effren, 2007 [R]).
Risks of maternal tuberculosis include fetal infection, which can occur as hematogenous spread from the mother, by aspiration of amniotic fluid/endometrium, or airborne after delivery. Congenital tuberculosis symptoms include respiratory distress, fever, liver/spleen enlargement, poor feeding, lethargy and lymphadenopathy (Laibl, 2005 [R]).

Active tuberculosis can be treated during pregnancy.Inactive tuberculosis could be treated prior to conception if detected (Weinberger, 1995 [R]). Initiation of treatment for latent infection during pregnancy should be considered based on the risk for progression to active disease (Effren, 2007 [R]).

Periodontal disease

Any infection during pregnancy can be a problem, and an assessment of oral health should be considered as a part of prenatal care. There have been numerous studies evaluating periodontal disease and a link to various adverse pregnancy outcomes including preterm delivery, low birth weight and preeclampsia. However, other studies have failed to confirm such an association. It is possible that periodontal disease may be one of potentially numerous markers of inflammatory changes, which may be the underlying etiology. It will be important to continue to follow these studies. The current data do not support oral health interventions other than in the context of general preventive care in pregnancy (Boggess, 2008 [R]; Ruma, 2008 [B]).

Herpes simplex virus (HSV)

Since genital herpes simplex virus (HSV) infection during pregnancy poses a risk to the fetus (American College of Obstetricians and Gynecologists, 2007b [R]), all pregnant women and their partners should be asked about a history of genital and orolabial HSV infection (Smith, 1998 [R]) (see Appendix A, "Preconception Risk Assessment Form").

Genital herpes infection occurs in one in five women in the United States. Many women of childbearing age are infected, and the rate of vertical transmission at delivery is 30%-60% for a primary HSV infection and 3% for a recurrent HSV infection (American College of Obstetricians and Gynecologists, 2007b [R]). Genital herpetic acquired in pregnancy before delivery does not seem to increase rates of congenital HSV infection if HSV seroconversion is completed by the time labor starts (Desselberger, 1998 [R]). Neonatal HSV infections are classified as disseminated disease (25%), central nervous system (CNS) disease (30%), and disease limited to the skin, eyes or mouth (45%) (Whitley, 1988 [R]). Mortality is 30% for disseminated disease and 4% for CNS disease (American College of Obstetricians and Gynecologists, 2007b [R]).

Asymptomatic shedding during pregnancy does not predict asymptomatic shedding at delivery (Arvin, 1986). Hence, routine screening in asymptomatic patients is not recommended (American College of Obstetricians and Gynecologists, 2007b [R]). Women with an HSV-positive partner should consider abstinence, condom use, antiviral therapy in the HSV-positive partner, and avoidance of orogenital contact if the partner has orolabial HSV infection (Smith, 1998 [R]).

Primary versus non-primary HSV infection is distinguished based on the combination of positive viral detection and negative serologic tests or evidence of seroconversion (American College of Obstetricians and Gynecologists, 2007b [R]).

Primary HSV infection during pregnancy is treated with oral or intravenous antiviral medications based on the severity of the infection. The efficacy of suppression therapy from 36 weeks of gestation until delivery following primary HSV infection is uncertain (American College of Obstetricians and Gynecologists, 2007b [R]).

Women with recurrent genital herpes should be counseled about suppressive therapy. The efficacy of suppressive therapy to prevent recurrences near term (36 weeks of gestation until delivery) has been well established. A systematic review of RCTs showed the rate of recurrent genital HSV outbreak at delivery...
was reduced by 75%, and the rate of Caesarean delivery for recurrent genital herpes was reduced by 40% (Sheffield, 2003 [M]). Recommended treatment is acyclovir 400 mg three times daily or valacyclovir 500 mg two times daily (Centers for Disease Control, 2006 [R]). There are no documented increases in adverse fetal effects because of exposure during pregnancy to acyclovir or valacyclovir (American College of Obstetricians and Gynecologists, 2007b [R]).

Caesarean delivery is indicated when women have active genital lesions or prodromal symptoms, such as vulvar pain or burning, at the time of delivery. The prodromal symptoms may indicate an impending outbreak (American College of Obstetricians and Gynecologists, 2007b [R]). Among women with HSV detected at delivery, neonatal herpes occurred in 1.2% of infants delivered by Caesarean section, compared to 7.7% delivered vaginally (Brown, 2003 [B]). Caesarean delivery is not recommended for women with a history of HSV infection but no active disease or prodrome during labor (American College of Obstetricians and Gynecologists, 2007b [R]).

Rubella/Rubeola (see Annotation #8)

Varicella (see Annotation #9)

Syphilis (see Annotation #18)

HIV (see Annotation #20)

Viral Hepatitis B & C (see Annotation #26)

Influenza (see Annotation #27)

E. Genetic risks (see Appendix D, "Prenatal Genetic Risk Assessment Form")

The history of both parents, as well as their family histories, should be reviewed for genetic disorders.

- Age of both parents at baby's birth
- Racial background of both parents, and whether appropriate testing has been done if determined to be in a hereditary-trait risk group
- Substance abuse
- Presence of hereditary defects/disorders in close relatives
- Family history of psychiatric disease/mood disorders
- Serious health conditions of mother
- History of unplanned pregnancy loss

Genetic screening

In the aggregate, common congenital abnormalities are frequent in the general population. A general figure for initial counseling of patients and families is 5% (Lemyre, 1999 [C]).

The determination of whether a couple, or anyone in the family, has a heritable disorder can easily be accomplished by using a questionnaire format. The genetic screening should be performed at the preconception or initial prenatal visit. Early identification of genetic risks allows a woman and her family to decide whether to conceive or whether to undergo additional testing to determine if the genetic disorder affects this pregnancy (Simpson, 1991 [R]).

Hemophilia A is an X-linked disorder with an incidence of 1 in 10,000 males.
Duchenne and Becker muscular dystrophies are X-linked disorders of dystrophin structure and function occurring in 1/3,500 live male births (Monckton, 1982 [D]). Female carriers are usually only mildly affected.

Cystic fibrosis is the most common fatal autosomal recessive disorder among Caucasian children, with an incidence of 1 in 2,500 births (Ratjen, 2003 [R]). All identified mutations account for about 97% of mutations in most populations (Kerem, 1997 [R]). The effectiveness of testing in other than Caucasians is not clear. The American College of Obstetricians and Gynecologists recommends that all patients be asked about genetic risks for cystic fibrosis. Genetic testing and counseling should be offered if risk factors are present (American College of Obstetricians and Gynecologists, 2005d [R]; Langfelder-Schwind, 2005 [R]; Mennuti, 1999 [R]; Schwind, 1999 [D]).

Mental retardation

When the etiology is known, causes that occur prenatally account for most cases of mental retardation, regardless of severity. However, the distribution of causes varies with severity. In a population-based study of births between 1980 and 1985 in Norway, 178 children were identified with severe (IQ less than 50) or mild mental retardation (IQ 50 to 70) (Stromme, 2000 [C]). The following distribution was noted for severe and mild mental retardation, respectively:

- Prenatal – 70% and 51%
- Perinatal (including some with a possible prenatal origin) – 4% and 5%
- Postnatal and acquired – 5% and 1%
- Undetermined timing – 18% and 11%

In many cases, no etiology can be identified despite extensive evaluation. In the Norwegian study, unspecified causes accounted for 4% and 32% of severe and mild mental retardation, respectively. The proportion of cases with unknown cause may be higher in some populations. As an example, in a report of 16,735 cases of mental retardation without autism or cerebral palsy in California between 1987 and 1994, the cause was unknown in two-thirds (Croen, 2001 [C]).

Among the known prenatal causes of mental retardation, the majority are genetic abnormalities (Croen, 2001 [C]; Stromme, 2000 [C]). Among these are the following disorders (Shevell, 2003 [M]):

- Down syndrome, caused by trisomy 21.
- Fragile X syndrome, which occurs in approximately 1% to 2% of individuals with mental retardation, is one of the most common inherited disorders that cause developmental delay and mental retardation (De Vries, 2003 [R]).
- Mutations in the gene encoding MECP2 (methyl–Cp G binding protein 2), located on the X chromosome, occur in most cases of Rett syndrome, an uncommon cause of severe developmental delay and mental retardation in girls, as well as more mildly affected girls and boys with mild or severe mental retardation.
- Varieties of other disorders are also inherited in X-linked patterns and occur in syndromic or non-syndromic forms; together these account for approximately 10% of mental retardation in males.
- Submicroscopic subtelomeric rearrangements are identified in approximately 5% of children with mental retardation (De Vries, 2003 [R]). The rate appears to be higher in severely affected children and lower in those who are mildly affected (Shevell, 2003 [M]). Advances in techniques for genetic profiling, including array-based comparative genomic hybridization (Array-CGH)
identify microimbalances as the probable cause of mental retardation in 10% to 16% of individuals (Engels, 2007 [C]).

Patients with a family history of mental retardation or a history of fragile X mental retardation should receive genetic counseling and should be offered genetic testing to assess their risk for having an affected child (American College of Obstetrics and Gynecologists, 2006b [R]).

In cases with three or more pregnancy losses, there is a 3.5%-5% risk of a maternal chromosomal rearrangement, and a 1%-2% risk of a paternal rearrangement.

Tay-Sachs disease is an autosomal recessive disorder occurring in 1 in 2,500 (Zinberg, 2001 [R]) children of Ashkenazi Jewish parents. Most individuals of Jewish descent in the U.S. are of Ashkenazi descent, so hexosaminidase screening should be offered to all Jewish patients. Pregnancy and oral contraceptives diminish serum levels of hexosaminidase, so leukocyte hexosaminidase A levels should be checked (American College of Obstetricians and Gynecologists, 2005b [R]; Eng, 2001 [R]).

Hemoglobinopathies

A complete blood count and hemoglobin electrophoresis are the appropriate laboratory tests for screening for hemoglobinopathies.

The hemoglobinopathies are a heterogeneous group of single-gene disorders that includes the structural hemoglobin variants (e.g., sickle cell disease) and the thalassemias (alpha and beta). More than 270 million people worldwide are heterozygous carriers of hereditary disorders of hemoglobin, and at least 300,000 affected children are born each year.

Genetic screening can identify couples at risk and allow them to make informed decisions regarding reproduction and prenatal diagnosis. Individuals of African, Southeast Asian and Mediterranean ancestry are considered at highest risk. Ethnic groups considered low risk include northern Europeans, Japanese, Native Americans, Inuit (Eskimo) and Koreans.

In individuals of African descent, a CBC and hemoglobin electrophoresis should be performed as part of the initial screening. In the past other solubility tests had been used to screen for sickle cell but now are considered inadequate and fail to identify important transmissible hemoglobin gene abnormalities affecting fetal outcome. Many individuals with these genotypes are asymptomatic, yet if his or her partner has the sickle cell trait or other hemoglobinopathies, they can produce offspring with more serious hemoglobinopathies.

In individuals of non-African descent, a CBC along with RBC indices is sufficient for initial screening. If the individual shows no abnormality, no further screening is recommended. If the individual has anemia with reduced MCV and normal iron studies, a hemoglobin electrophoresis should be ordered. If this is normal and the individual is not Southeast Asian, no further workup is needed. If the patient is Southeast Asian, consider evaluation for alpha-thalassemia using DNA-based testing. In any of these cases, if the hemoglobin electrophoresis is abnormal, offer testing of the partner to assess reproductive risk.

Management of the hemoglobinopathies in pregnancy varies. Pregnancies in women with sickle cell disease are at increased risk for spontaneous abortion, preterm labor, intrauterine growth retardation (IUGR) and stillbirth. A plan for serial ultrasounds and antepartum fetal testing is reasonable. In women with the alpha-thalassemia trait, the course of pregnancy is not significantly different from those with normal hemoglobin. Until recently, pregnancy in women with beta-thalassemia major was extremely rare because of early death, delay of growth and sexual development in untreated women. Since the introduction of transfusion therapy and iron chelation therapy in the late 1970s, favorable pregnancy outcomes have been noted. Beta-thalassemia minor causes usually only mild asymptomatic anemia not requiring iron replacement beyond prophylactic dosing in the absence of documented iron deficiency (American College of Obstetricians and Gynecologists, 2007a [R]).
Folate chemoprophylaxis against neural tube defects is discussed in Annotation #15, "Folic Acid Supplement."

Fetal aneuploidy screening

A discussion of the rationale and screening for Down syndrome and neural tube defects can be found in Annotation #24, "Fetal Aneuploidy Screening."

5. Height and Weight/Body Mass Index (BMI)

The patient's BMI should be calculated at the first prenatal visit, and weight gain during pregnancy should be monitored at each subsequent prenatal visit.

The Institute of Medicine has devised recommendations for total weight gain and the rate of weight gain based on the pre-pregnant or initial pregnant BMI (if pre-pregnant BMI is not known). A table, modified from the report of the Institute of Medicine, is included here.

<table>
<thead>
<tr>
<th>Pre-pregnant or Initial Pregnant BMI</th>
<th>BMI (WHO calculations)</th>
<th>Total Weight Gain Range (pounds)</th>
<th>Rate of Weight Gain in Second and Third Trimesters (pounds/week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>< 18.5</td>
<td>28-40</td>
<td>1 (range 1.0 to 1.3)</td>
</tr>
<tr>
<td>Normal weight</td>
<td>18.5-24.9</td>
<td>25-35</td>
<td>1 (range 0.8 to 1.0)</td>
</tr>
<tr>
<td>Overweight</td>
<td>25.0-29.9</td>
<td>15-25</td>
<td>0.6 (range 0.5 to 0.7)</td>
</tr>
<tr>
<td>Obese</td>
<td>≥ 30.0</td>
<td>11-20</td>
<td>0.5 (0.4 to 0.6)</td>
</tr>
</tbody>
</table>

Although evidence to support an absolute weight gain during pregnancy based on fetal or maternal health outcomes is limited, the recommendations of the Institute of Medicine are supported in several ways. A retrospective analysis of 7,259 deliveries found either a rapid or slow weight gain during later pregnancy was associated with greater incidence of preterm birth (Carmichael, 1997b [C]; Siega-Riz, 1996 [B]).

Women with pre-pregnancy BMI mostly in the underweight category had an increased risk of preterm birth (Spinillo, 1998 [C]). Women with high pre-pregnancy BMI have increased risk for gestational diabetes, hypertension, preeclampsia, dystocia in labor, primary Caesarean section, labor induction, increased wound infection, antepartum venous thromboembolism, and anesthesia complications (Robinson, 2005 [B]). Women with pre-pregnancy BMI in the obese category had an increased risk of gestational hypertension and significantly higher postpartum BMI at the six week postpartum visit if weight gain during the pregnancy was greater than 15 pounds. Equally important, that same study showed no adverse effects on perinatal morbidity or mortality among obese women whose weight gain during pregnancy was less than 15 pounds (Thornton, 2009 [A]).

Bariatric surgery

Pregnancy after bariatric surgery is relatively safe, when compared to the higher risks of gestational diabetes mellitus, pregnancy-related hypertension and fetal macrosomia associated with obesity in pregnancy (American College of Obstetricians and Gynecologists, 2005 [R]). Pregnancy after bariatric surgery is not associated with adverse perinatal outcomes (Guelinckx, 2009 [R]; Sheiner, 2004 [C]). However, monitoring for nutritional deficiencies is an important consideration after bariatric surgery, and there have been rare
case reports of maternal deaths from intestinal obstruction in pregnancy after roux-en-y bypass procedures (Moore, 2004 [NA]).

The work group recommends that, where available, women who become pregnant after surgery be referred to a perinatologist for consultation. The American College of Obstetricians and Gynecologists also recommends referral to a nutritionist at the beginning of the pregnancy for evaluation of possible nutrient deficiencies (American College of Obstetricians and Gynecologists, 2009a [R]).

6. Blood Pressure

Blood pressure (BP) screening is recommended at the preconception visit and at all prenatal visits throughout the pregnancy. Meaningful blood pressure measurements require consistent use of correct technique and a cuff of appropriate size (length 1.5 times the upper arm circumference or a cuff with a bladder that encircles 80% or more of the arm). The patient should be in an upright position and the blood pressure should be measured after the patient's arm has rested at heart level for five minutes (National High Blood Pressure Work Group, 2000 [R]).

Hypertensive disease occurs in 12%-22% of all pregnancies and is responsible for approximately 17% of maternal deaths in the U.S. Diagnosis of hypertension in pregnancy is divided into disorders related to the pregnancy (gestational hypertension and preeclampsia) and hypertensive disorders unrelated to pregnancy. The onset of hypertensive disorders in either category are nearly always asymptomatic. For this reason, only universal screening maneuvers can reliably detect these disorders early in the disease process (Chesley, 1984 [R]).

The National High Blood Pressure Working Group defines hypertension in pregnancy as either a diastolic pressure above 90 mmHg or a systolic blood pressure above 140 mmHg in a woman 20 weeks or greater with a previously normal blood pressure. The term "gestational hypertension" should replace "pregnancy-induced hypertension" in women with elevated BP without proteinuria. Preeclampsia is defined as gestational hypertension plus excessive proteinuria.

The conventional urine dipstick test is unreliable in quantifying urine protein excretion. The threshold for a positive urine dipstick (1+ on the scale) roughly corresponds to 300 mg per 24 hours (the upper limit of normal protein excretion) if the urine volume for that 24-hour collection is one liter. A systematic review concluded a 1+ dipstick reading had no clinical value, since a negative dipstick did not necessarily exclude significant proteinuria, while many women with positive tests did not have it (Waugh, 2004 [M]).

There are two common means to accurately quantify urine protein excretion. The 24-hour urine collection allows a direct determination of total urine protein. The creatinine excretion can also be measured, allowing an estimation of the creatinine clearance, and by extension, the glomerular filtration rate (GFR). However, the 24-hour urine collection is cumbersome and delays making a diagnosis. Additionally, studies have shown many ambulatory patient urine collections are incomplete (Cote, 2008 [B]).

The second method for quantifying urine protein excretion is measurement of urine protein to creatinine ratios. The simultaneous determination of urine protein and creatinine allows for corrections of protein levels based on urine concentration (osmolality). A high correlation coefficient with 24-hour urine collection has been reported. A value below 0.15 mg protein to creatinine is considered normal, while a value above 0.7 is highly predictive of greater than 300 mg of protein in a 24-hour urine protein collection. Values between these two cutoffs may best be further evaluated with a 24-hour urine protein collection (Price, 2005 [M]; Rodriguez-Thompson, 2001 [C]). Although spot protein to creatinine ratios strongly correlate with 24-hour urine collections, studies have shown mixed results for the predictive value of these ratios when 24-hour urine collections are used as the gold standard. At this time, protein to creatinine ratios should not be used as a replacement for the 24-hour urine collection test (Wheeler, 2007 [C]).
The risks of untreated preeclampsia and coincident hypertension in pregnancy are manifold. Potential maternal complications include abruptio, renal failure, cerebral hemorrhage, disseminated intravascular coagulation, pulmonary edema, circulatory collapse, eclampsia and death. Fetal complications may include hypoxia, low birth weight, premature delivery, or perinatal death (Cunningham, 1992 [R]).

Therefore, the best screening strategy for hypertension in pregnancy appears to be early detection of an abnormal blood pressure trend over time. Although there is no direct proof that regular blood pressure screening reduces maternal or perinatal morbidity or mortality, it is unlikely that ethical concerns will allow a study to withhold blood pressure screening or treatment from a control group. Since the screening test is simple, inexpensive and acceptable to patients, screening is indicated on an empirical basis (U.S. Preventive Services Task Force, 1996a [R]).

Patients who may be at a higher risk for developing preeclampsia include, but are not limited to, those with a history of preeclampsia, chronic hypertension, lupus, preexisting diabetes, antiphospholipid syndrome and renal disease. Baseline blood work for hemoglobin, platelet count, liver function tests and 24-hour urine during an early prenatal visit may be useful in helping to establish an accurate diagnosis should signs or symptoms of preeclampsia be present later in the pregnancy (Duckitt, 2005 [M]).

7. History and Physical

An age-appropriate periodic health assessment as described in the ICSI Preventive Services guidelines should be performed. The Preventive Services guidelines should be consulted regarding the indicated frequency of screening, counseling and immunization maneuvers. Ensure patient is up to date on tetanus and Hepatitis B vaccinations. Abdominal and pelvic examination to evaluate gynecologic pathology should be done at the preconception visit and the first prenatal visit.

Most of the major textbooks suggest a general history be obtained at the onset of prenatal care. The best summation regarding the extent of the history is given in William's Obstetrics and Gynecology, which states that the history "must be sufficiently penetrating to uncover any current abnormalities and any prior ones that could have a bearing in the course of pregnancy" (Pritchard, 1985 [R]).

8. Rubella/Rubeola Status

Screening for rubella susceptibility by history of vaccination or by serology is recommended for all women of childbearing age at their first preconception encounter to reduce incidence of congenital rubella syndrome (CRS). All susceptible non-pregnant women of childbearing age should be offered vaccination. Susceptible pregnant women should be vaccinated in the immediate postpartum period.

Due to concerns about possible teratogenicity, MMR or measles vaccination is not recommended during pregnancy. There are no known adverse consequences to vaccination postpartum while breastfeeding (Krogh, 1989 [C]).

Burden of Suffering

Rubella in the first 16 weeks of pregnancy causes miscarriage, abortion, stillbirth and congenital rubella syndrome (CRS). The most common manifestations of CRS are hearing loss, developmental delay, growth retardation, and cardiac and ocular defects. The lifetime costs of treating a patient with CRS in 1985 exceeded $220,000. In 1993 the incidence rate was 0.1 in 100,000 (92 cases).

Adults accounted for 25% of the measles cases reported in 1994. Complications of measles, including pneumonia and encephalitis, are more common among adults than among school-aged children. Outbreaks have
been known to occur in locations such as schools or barracks where young adults congregate. Measles was reported in 232 (0.1 in 100,000) American adults (age 20 or older) in 1994 (Centers for Disease Control, 1994 [R]).

9. Varicella Status

The CDC recommends that all adults be immunized if seronegative. However, administration of the varicella vaccine during pregnancy is contraindicated. Immunity status should be elicited during the preconceptation counseling session. Testing and immunization should then be offered to the appropriate individuals (Jumann, 2002 [R]).

Maternal varicella infection in the first half of the pregnancy has been associated with congenital varicella syndrome. Also, varicella infections during pregnancy may result in higher rates of complications from the infection, such as varicella pneumonia and death (Enders, 1994 [D]; Jones, 1994 [C]).

Among adults having a negative or uncertain history of varicella, approximately 85%-90% will be immune. Generally, it is felt that a patient with a positive history of varicella infection should be considered immune. Patients with a negative or uncertain history of varicella infection should have their titers checked before receiving the immunization because of the high rate of seropositivity in those individuals. One study demonstrates that this approach is cost effective (Smith, 1998 [M]).

10. Domestic Violence

Domestic violence is a serious public health problem for many Americans. In accordance with the ICSI Preventive Services guidelines, screening for domestic violence should be done at a preconception visit.

Due to the substantial potential benefit to families in which the cycle of abuse can be interrupted, providers should maintain a high index of suspicion for domestic violence when caring for pregnant women. Likewise, providers should have a clear plan for referring victims and perpetrators of domestic violence to other professionals and community services.

Violence during pregnancy has been associated with miscarriage, late entry into prenatal care, stillbirth, premature labor and birth, fetal injury and low birth weight (Krug, 2002 [R]).

Pregnant women do experience domestic violence, and some studies suggest pregnancy as a risk factor. In surveys (primarily from urban, public clinics), 7%-18% of women reported physical abuse during the current pregnancy. Women of all ethnic, educational and socioeconomic backgrounds have reported abuse. Studies have also reported associations between partner abuse and unhealthy prenatal behaviors and poor perinatal outcomes (Webster, 1996 [B]).

In a survey study of urgent care OB/GYN patients, 46% of pregnant women reported a history of abuse, and 10% of pregnant women reported recent abuse. Young age was significantly associated with recent abuse independent of pregnancy status. In this study, young age was defined as under 20 years of age (McGrath, 1998 [D]).

Some studies have described an increase in the reporting of domestic violence during pregnancy when a systemic screening approach is implemented. There is also some evidence to suggest that repeated screening for domestic violence during pregnancy may increase reporting of domestic violence. Direct interview screening resulted in a higher rate of reporting prenatal domestic abuse than a written, self-report questionnaire method (McFarlane, 1992 [B]; Wiist, 1999 [C]).

Pregnant women who reported abuse and were offered intervention and resources increased their safety behaviors both during and after pregnancy. One study reported increased moderate or severe violence during
the postpartum period. Identification of prenatal abuse and immediate intervention with safety information may prevent future abuse (Gielen, 1994 [C]).

11. Depression

The prevalence of depression in pregnant women and new mothers is estimated from 5% to 25% and is considered a major public health problem (Gaynes, 2005 [M]). Untreated depression has been associated with unfavorable health behaviors in pregnancy such as poor attendance at antenatal clinics, substance misuse, decrease in appetite resulting in poor weight gain and subsequent fetal growth restriction, preterm delivery, placenta abruption, and newborn irritability (Evans, 2001 [B]; Zuckerman, 1989 [D]).

Factors associated with a greater likelihood of antepartum depressive symptoms in bivariate analyses were maternal anxiety, life stress, history of depression, lack of social support, unintended pregnancy, Medicaid insurance, domestic violence, lower income, lower education, smoking, single status and poor relationship quality (Lancaster, 2010 [M]).

Given the significant morbidity for both mother and infant, antenatal screening and intervention for those women who are at greatest risk of antenatal and postnatal depression and anxiety are potentially important strategies. During pregnancy and the early postpartum period provide opportunities through regular prenatal and postpartum provider contacts to screen for depression (Gavin, 2005 [M]). The American College of Obstetricians and Gynecologist, The Committee Opinion recommendation is to perform psychosocial screening at least once per trimester to increase the likelihood of identifying important issues and reducing poor birth outcomes (National Collaborating Centre for Women's and Children's Health, 2006a [R]). The United States Preventive Services Task Force (USPSTF) recommends routine depression screening for all patients in clinical practices that have systems in place to assure effective diagnosis, treatment and follow-up (U.S. Preventive Services Task Force, 2002 [R]).

There is not, however, good evidence to distinguish between the different screening instruments for depression. There is also little evidence of large-scale screening programs to date (Royal College of Obstetricians and Gynecologists, 2003 [R]). The work group suggests using the following two questions to screen for depression to be as effective as lengthier tools and an appropriate place to start.

1. Over the past two weeks, have you ever felt down, depressed or hopeless?
2. Over the past two weeks, have you felt little interest or pleasure in doing things?

(Pignone, 2002 [M])

If a patient has an active diagnosis of depression or screens positive anytime during the perinatal period, refer to the ICSI Major Depression in Adults in Primary Care guideline for treatment options for patients with depression during the perinatal phase.

12. Preterm Labor Education and Prevention

Advise the patient of the importance of communication with health care provider as soon as pregnancy is suspected.

At-risk patients should be assessed and given educational information about risk factors by 16-20 weeks or anytime thereafter when a risk factor is identified.

If patients have identifiable risk factors, intervene as appropriate in your health care setting. See Annotation #4, "Risk Profile Screening."

Return to Annotation Table

Return to Table of Contents
Is Patient Willing to Change Modifiable Risks?

- Provide information about problems caused by specific behaviors in pregnancy and offer help when ready to change.
- Offer support, interventions and/or referrals as referred to in the ICSI Preventive Services for Adults guideline.
- Ask to set a quit or change date, provide educational aids, offer counseling or classes, arrange for follow-up (at least a phone call) soon after the quit or change date.

Modifiable risk factors:

- Family stress
 Psychosocial situation – referrals as appropriate, include patient's "support system" in visits and education
- Stress/anxiety – educate about and assist with sources of stress such as medical limitations for work, day care, home help
- Depression
- Domestic violence
- Tobacco use
- Drug and alcohol use – urine testing where indicated
 For providers' legal obligations in testing for chemical use during pregnancy, see the 2002 Minnesota Statutes 626.5561 (Reporting of Prenatal Exposure to Controlled Substances) and 626.5562 (Toxicology Tests Required). Minnesota statutes may be accessed at http://www.leg.state.mn.us.
- Nutritional concerns
 Dietary inadequacy – educate, assist with referral for food supplement program
- Sexually transmitted diseases
- Low preconception BMI/slow prenatal weight gain (see Annotation #5, "Height and Weight/Body Mass Index [BMI]")

Educate Patient to Monitor Risk Factors

Contractions
Menstrual cramps
Intestinal cramps
Constant backache
Constant pelvic pressure
Vaginal discharge amount and color
Bleeding or spotting
Urinary frequency
(Andersen, 1989 [B]; Nagey, 1985 [R])

Also see Available Resources,"March of Dimes," listed at the end of this guideline.

Home Health Visits/Case Management

Home health visits and case management are additional methods for monitoring patients at risk (Bryce, 1991 [A]).
Cervical Assessment

Transvaginal sonography of the cervix appears to be an objective and reliable method to assess cervical length and estimate risk of preterm delivery (Honest, 2003 [R]). Serial measurements may be considered starting at 16 weeks in high-risk patients (Spong, 2007 [R]). Sonographic cervical length for risk assessment is not recommended as a routine screening test in low-risk patients. Digital exams should not be eliminated and can be a useful adjunct to ultrasound findings (Iams, 1996 [C]; Newman, 2008 [B]).

Cervical sonography is generally performed on a biweekly basis unless clinical conditions suggest more frequent evaluation (Airoldi, 2005 [B]). A possible benefit of cerclage for patients with prior preterm birth, current singleton pregnancy and a cervical length of less than 15 mm between 16 and 24 weeks has been suggested by a recent multicenter randomized trial (Owen, 2009 [A]).

13. List of Medications, Herbal Supplements and Vitamins

(See also Annotation #25, "Nutritional Supplements.")

Use of all prescription and nonprescription drugs, herbal supplements, and vitamins should be reviewed and documented with every woman at a preconception visit. A complete inventory of drug usage immediately prior to and during pregnancy should be performed at the first prenatal visit. All pregnant women should be counseled about the potential reproductive effects of medications. A Web site that provides patients with a review of the pregnancy implications for the most common herbal supplements is http://www.american-pregnancy.org/pregnancyhealth/naturalherbsvitamins.html.

With rare exceptions, any drug that exerts a systemic effect in the mother will cross the placenta to reach the embryo and fetus. The effects on the embryo and fetus cannot be predicted accurately either from the effects or lack of effects in the mother. Similarly, widespread use of a medication during pregnancy without recognized effects on the fetus does not guarantee the safety of the medication. The work group recommends accessing resources such as Drugs in Pregnancy and Lactation (Briggs, 2008 [R]).

14. Accurate Recording of Menstrual Dates

The most accurate determination of an estimated due date is the last menstrual period in women with regular menstrual cycles. This requires careful history taking, because many women erroneously determine this date. Some women can say with certainty exactly which day they became pregnant. In vitro fertilization and related reproductive technologies allow exact determination of due date from time of fertilization of the ovum in the laboratory.

15. Folic Acid Supplement

The U.S. Preventive Services Task Force (USPSTF) and Centers for Disease Prevention and Control (CDC) recommend that all women of childbearing age take a daily vitamin supplement containing 400 to 800 micrograms of folic acid from at least one month before conception through the first three months of pregnancy. The CDC recommends that women planning pregnancy who have previously had a pregnancy affected by a neural tube defect (NTD) consult their provider about taking an increased daily dose of folic acid (Wolff, 2009 [R]). Patients who previously have a pregnancy affected by a neural tube defect should have 4 mg daily. Other patient groups who may be considered for higher doses of folic acid include black, Hispanic, or Asian/Pacific Islander race/ethnicity, younger patients or overweight or obese patients (Lawrence, 2006 [D]).
16. Complete Blood Count (CBC)

A CBC is recommended for screening of hemoglobinopathies.

Hemoglobin Assessment

A hemoglobin assessment is recommended for all pregnant women at their first prenatal visit.

If hemoglobin is less than 11 g/dL in the first or third trimester or less than 10.5 g/dL in the second trimester, a course of at least 30 mg oral elemental iron daily should be administered. If a repeat hemoglobin assessment one month after oral iron therapy remains low, a serum ferritin should be drawn. If the serum ferritin level is less than 12 mcg/L, one can still make the diagnosis of iron deficiency anemia. If daily doses of more than 30 mg elemental iron are administered, consideration should be given to replacement of copper and zinc.

Supplemental iron is available in two forms: ferrous and ferric. Ferrous iron salts (ferrous fumarate, ferrous sulfate, and ferrous gluconate) are the best-absorbed forms of iron supplements (Hoffman, 2000 [R]).

Elemental iron is the amount of iron in a supplement that is available for absorption.

<table>
<thead>
<tr>
<th>Supplement</th>
<th>Elemental Iron Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrous gluconate</td>
<td>12% elemental iron</td>
</tr>
<tr>
<td>Ferrous sulfate</td>
<td>20% elemental iron</td>
</tr>
<tr>
<td>Ferrous fumarate</td>
<td>33% elemental iron</td>
</tr>
</tbody>
</table>

The amount of iron absorbed decreases with increasing doses. For this reason, it is recommended that most people take their prescribed daily iron supplement in two or three equally spaced doses (Center for Disease Control, 2002[R]).

Pregnant women should be encouraged to drink water or orange juice and to eat foods high in available iron. Women should be counseled that drinking milk, coffee or tea with meals lowers iron absorption. The value of breastfeeding as primary protection against iron deficiency anemia in infants should also be reviewed with all pregnant women (Centers for Disease Control, 1989 [R]; Pizarro, 1991 [C]).

Iron deficiency anemia may be related to preterm birth and low birth weight, though other studies failed to demonstrate this correlation (Rasmussen, 2001 [R]).

A randomized clinical trial concluded that intravenous iron treatment for iron deficiency anemia in pregnancy replaced iron stores faster and more effectively than oral iron with no serious adverse reaction (Al, 2005 [A]).

Dietary counseling to promote iron absorption from foods should be given to all pregnant women.

Because hemoglobin measurement is a non-specific test for iron deficiency, further evaluation should be performed to identify the etiology of anemia detected by screening. Serum ferritin appears to have the best sensitivity and specificity for diagnosing deficiency in anemic patients (Guyatt, 1992 [M]).

There is insufficient evidence to support universal iron supplementation in pregnancy (Hemminki, 1995[A]).

Excess supplementation may not be benign. Mineral imbalances, including zinc and copper, may result. Placental infarctions, a common cause of fetal death, are nonexistent with hemoglobin levels less than or equal to 8 g/dl. No benefit from supplementation can be demonstrated for non-anemic women in the prevention of international growth restriction, pregnancy-induced hypertension, primary pulmonary hypertension or fatigue (Simmer, 1987 [C]).
17. ABO/Rh/Ab (RhoGAM)

D (Rh) Incompatibility

D (formerly Rh) blood typing and antibody screening is recommended for all pregnant women at their first prenatal visit. For purposes of chemoprophylaxis, D-negative and DU blood types are equivalent. As a consequence of the current laboratory testing procedure, ABO typing will also be determined through such screening. Repeat D antibody testing is recommended for all unsensitized D-negative women at 28 weeks gestation, followed by D immunoglobulin (RhoGAM) if the woman is antibody-negative. A similar dose of D immunoglobulin is recommended for all unsensitized D-negative women after amniocentesis. There is currently insufficient evidence to recommend for or against the administration of RhoGAM after chorionic villus sampling, cordocentesis, external version, or antepartum placental hemorrhage (*U.S. Preventive Services Task Force, 1966 [R]*).

D incompatibility (D-negative woman pregnant with D-positive fetus) occurs in up to 10% of pregnancies. If no preventive measures are taken, 0.7%-1.8% of these women will be isoimmunized antenatally, 8%-17% at delivery, 3%-6% after elective or spontaneous abortion, and 2%-5% after amniocentesis (*Mollison, 1987 [R]*).

In subsequent D-positive pregnancies in such isoimmunized women, maternal D antibody will cross the placenta into the fetal circulation and cause hemolysis (erythroblastosis fetalis). Without treatment, 25%-30% of such fetuses will develop detectable hemolytic anemia and hyperbilirubinemia, and another 20%-25% will develop severe enough hydrops fetalis to die in utero or in the neonatal period (*Bowman, 1985 [R]*)

A series of controlled clinical trials in the 1960s demonstrated the efficacy of D immunoglobulin in preventing maternal isoimmunization of most unsensitized D-negative women after delivery of a D-positive fetus (*Pollack, 1968 [A]*)

The most frequent cause of failure of postpartum chemoprophylaxis is antenatal isoimmunization, which happens in 0.7%-1.8% of pregnant women at risk. Non-randomized trials have shown a reduction in the incidence of isoimmunization to less than 2.0% when D immunoglobulin is also administered to unsensitized pregnant women at risk at 28 weeks gestation (*Trolle, 1989 [C]*)

There is similar evidence for the efficacy of such chemoprophylaxis after amniocentesis (*Tabsh, 1984 [C]*)

Studies documenting the effectiveness of D immunoglobulin prophylaxis are not available for chorionic villus sampling, cordocentesis, external version, or antepartum placental hemorrhage (*U.S. Preventive Services Task Force, 1996b [R]*)

18. Syphilis

All pregnant women at the first prenatal visit and all high-risk women at a preconception visit should undergo routine serologic testing (RPR or VDRL) for syphilis (*U.S. Preventive Services Task Force, 2009 [R]*)

There is insufficient evidence to recommend screening all women at the preconception visit. However, early detection of syphilis at the preconception visit allows antibiotic therapy to prevent clinical disease and to prevent transmission to sexual contacts. Maternal antibiotic therapy prevents nearly all congenital syphilis.

Because of the decline in cases of syphilis in women during the years 1992-2002 and in certain areas of the country syphilis has nearly disappeared, universal screening may no longer be justified. Yet certain areas of the U.S. (urban areas and the South) have had syphilis outbreaks, and due to the devastating effects of congenital syphilis, prenatal screening is still universally recommended by the CDC (*Centers for Disease Control, 2006 [R]; Centers for Disease Control, 2008 [R]; Kiss, 2004 [C]*)
Premature birth occurs in 20% of cases of maternal syphilis, and a wide variety of severe abnormalities result from congenital syphilis. The vertical transmission rate is estimated at 70%-100% (Dorfman, 1990 [D]).

Serologic tests have a sensitivity of 62%-76% and near 100% in primary and secondary syphilis, respectively. Specific treponemal tests, such as fluorescent treponemal antibody absorption (FTA), have a specificity of 96%. Treponemal tests should not be used as initial screening tests in asymptomatic patients due to the increased expense and the persistent positive test in patients with previous, treated infection (Hart, 1986 [C]).

A high-risk profile for women likely to have asymptomatic syphilis can be devised. A growing number of cases occur in prostitutes and IV drug users. A number of demographic and behavioral variables have been associated with higher rates of *T. palladium* infection: large urban areas or Southern states, history of sexually transmitted diseases or other current STIs, low socioeconomic status, and Black race or Hispanic heritage.

19. Urine Culture

Screening for asymptomatic bacteriuria (ASB) by urine culture is recommended for all pregnant women at the first prenatal visit. There are inadequate data to determine the optimal frequency of subsequent urine testing during pregnancy.

A urine culture obtained at 12-16 weeks of pregnancy will identify 80% of women who will ultimately have ASB in pregnancy, with an additional 1%-2% identified by repeated monthly screening (Bachman, 1993 [C]).

Among pregnant women, a sensitivity of only 50% for dipstick testing compared to culture has been reported. In pregnant women, microscopic analysis, with either bacteriuria or pyuria indicating a positive test, had a sensitivity of 83% but a specificity of only 59%. Positive predictive value of dipstick tests is 13% for pregnant women.

Predictive value of bacteriuria found on microscopic urinalysis among pregnant women is 4.2%-4.5%.

Early detection of ASB in pregnant women is of value because bacteriuria is an established risk factor for serious complications, including acute pyelonephritis, preterm delivery and low birth weight. Randomized controlled trials (RCTs), cohort studies and a meta-analysis of eight RCTs have shown that treatment of ASB can reduce the incidence of such complications (Pastore, 1999 [B]; Romero, 1989 [M]; Stenqvist, 1989 [C]).

20. HIV

As the incidence of HIV infection has increased among women of childbearing age, increasing numbers of children have become infected through perinatal transmission (Centers for Disease Control, 1995b [R]).

All pregnant women should receive education and counseling about HIV testing as part of their routine prenatal care. HIV testing should be recommended at the first prenatal visit for all pregnant women with their consent. In the event of a refusal of testing, the refusal should be documented.

Pregnant women found to be at higher risk for HIV on the basis of a screening instrument for infectious disease risks should receive continued education about the health benefits of HIV testing and should be considered for repeat HIV testing later in pregnancy.

A study involving mothers with mildly symptomatic HIV infection (CD4 greater than 200 mcg/L) showed that zidovudine has had a low incidence of severe side effects in the mothers and infants studied (Connor, 1994 [A]). Anti-retroviral medications given to pregnant women with HIV and to their newborns in the first few weeks of life reduces the vertical transmission rate from 25% to 2% or less (American College of Obstetricians and Gynecologists, 2008 [R]). It does transmit to the fetus and is associated in animal studies with early pregnancy failure, but it does not appear to cause fetal abnormality. The current guidelines on
interventions to reduce perinatal HIV transmission recommend combination antiretroviral therapy to be started from the second trimester until delivery, using zidovudine as the cornerstone. Despite the fact that evidence so far does not suggest zidovudine causes any significant fetal malformation in either human and animals when given in first trimester, this work group is still cautious in recommending the use of zidovudine in the first trimester (Siu, 2005 [D]). Detailed protocols of drug therapy do change and the work group recommends that this be developed in conjunction with infectious disease specialists who have detailed knowledge of current recommendations for both maternal and newborn treatment.

There is evidence to suggest that pregnant women in high-risk categories or from communities with a higher prevalence of seropositive newborns (greater than 0.1%) should be counseled about the benefits of early intervention for HIV. Repeat testing in the third trimester may also be indicated for this group (Tookey, 1998 [B]).

Several studies have indicated that counseling and testing strategies that offer testing only to those women who report risk factors fail to identify up to 50%-70% of HIV-infected women (Centers for Disease Control, 1995b [R]).

A policy of universal screening for all pregnant women with their consent is recommended on grounds of easier implementation and greater sensitivity than risk-profile screening alone (American College of Obstetricians and Gynecologists, 2008 [R]).

Identifying seropositive women may have other important benefits, including:

- some women may be candidates for Pneumocystis carinii chemoprophylaxis,
- male partners can be counseled about coitus and the use of condoms,
- newborns can be monitored for signs of infection,
- mothers can be counseled about breastfeeding, and
- parents may elect to terminate the pregnancy.

It may be possible to increase patient acceptance of HIV testing by informing women about the opportunity to reduce vertical transmission to their baby with treatment (Carusi, 1998 [D]).

A meta-analysis of cohort studies suggested that breastfeeding increased the vertical transmission rate by 14% (Dunn, 1998 [R]).

21. Blood Lead Screening

The Minnesota Department of Health recommends blood lead screening for pregnant women felt to be at risk for lead exposure. Patients should be assessed for lead exposure using the Blood Lead Screening Risk Questionnaire for Pregnant Women in Minnesota. (See Appendix F, "Blood Lead Screening Guidelines for Pregnant Women in Minnesota.")

22. Vaginal Birth After Caesarean (VBAC)

The recommendations in this guideline are supported by large controlled studies. The guideline work group would prefer to refer to double-blind studies, but it is not feasible to blind a woman to whether she is having labor or a Caesarean delivery, and it is unsafe to blind care providers to whether or not a woman has had a previous Caesarean delivery. Given these limitations, the work group feels confident of the literature support for the recommendations within this guideline. Furthermore, these recommendations are consistent with the latest practice patterns for VBAC published by the American College of Obstetricians and Gynecologists (American College of Obstetrics and Gynecologists, 2004 [R]).
At the first office visit:

- obtain previous operative reports stating type of uterine incision,
- perform thorough history and physical, and
- obtain necessary consultations from other specialists.

The operative report(s) of previous Caesarean deliveries or other uterine surgery should clearly state the type of uterine incision. A previous low segment transverse uterine incision carries the lowest risk of complications when attempting a VBAC. Certain cardiac, neurological, orthopedic or other medical conditions may be present that could jeopardize maternal and/or fetal safety if vaginal birth is attempted. Consultations and a copy of the recommendations should be obtained early in the prenatal period. Physical examination may detect pelvic masses or other conditions undetected by previous medical care that may be a barrier to VBAC (Lilford, 1990 [C]; Pridjian, 1992 [R]).

Discuss Risks/Benefits with Patient and Document

Provide patient education, including a discussion of the risks and benefits associated with VBAC. Encourage VBAC in appropriate patients. Document this discussion (American College of Obstetricians and Gynecologists, 2004 [R]; NIH Conference Statement, 2010 [R]).

A. Contraindications to VBAC

The overall rate of maternal complications has not been found to differ significantly between women who choose a trial of labor and women who elect to have a Caesarean delivery (Guise, 2004 [M]; Mozurkewich, 2000 [M]).

The study "Comparison of a Trial of Labor with an Elective Caesarean Section " reconfirms that, for both vaginal delivery and Caesarean section, the baby's risk for major complications is fairly equal and the safest route for the mother is vaginal delivery. While the mother's risk of major complications (hysterectomy, uterine rupture, operative injury) with trial of labor is slightly higher (1.6%) than a scheduled repeat Caesarean delivery (0.8%), these risks are still quite low (McMahon, 1996 [C]).

The work group recommends that after consideration of the individual situation of the patient, VBAC is still a viable option for the majority, due to the high probability of successful vaginal delivery and the low rate of complications after trial of labor. This data should be discussed when counseling a patient.

Symptomatic rupture of the gravid uterus carries a 45.8% perinatal mortality and a 4.2% maternal mortality and occurs in 4.3%-8.8% of women with a high vertical uterine scar (Eden, 1986 [D]; Pridjian, 1992 [R]).

Incisions penetrating the muscular layer of the uterus may weaken this area and increase the risk of uterine rupture (Caughey, 1999 [B]; O'Brien-Abel, 2003 [R]).

(Gabbe, 1986 [R]; Mozurkewich, 2000 [M]; Shipp, 2003 [C]; Shipp, 2002 [B])

A history of previous uterine dehiscence or rupture has a rate of repeat separation of 6.4% if previous uterine incision was in the lower segment and 32.1% if the scar is in the upper segment, with complication rates assumed to be similar to those of the primary uterine rupture (Ritchie, 1971 [D]).

A patient with a history of failure to progress in labor or a borderline pelvis on clinical pelvimetry has a 61%-79% success rate for a VBAC, slightly lower than those without that diagnosis (Duff, 1988 [D]; Suonio, 1986 [C]).

Various maternal/fetal medical conditions may make a Caesarean delivery the appropriate method of birth to decrease the risk of specific complications.
The risk of rupture is low in the laboring patient with an unknown type of uterine scar, since most of these are probably the low segment transverse type. If the indication for Caesarean delivery would require a low segment transverse incision, VBAC should be considered. If the indication for the Caesarean delivery requires a vertical incision, repeat Caesarean delivery may be safer (Beall, 1984 [B]; Pruett, 1988 [D]).

There may be present certain rare social, geographic or past obstetrical complications that may justify the patient's electing to have a repeat Caesarean delivery (American College of Obstetricians and Gynecologists, 1997 [R]).

Conditions that are not contraindications but that may increase risk

- Women with a previous vaginal delivery followed by a Caesarean delivery were only approximately one-fourth as likely to sustain uterine rupture during a trial of labor. Therefore, for women with two prior Caesarean deliveries, only those with a prior vaginal delivery should be considered candidates for a spontaneous trial of labor (American College of Obstetricians and Gynecologists, 2004 [R]; Caughey, 1999 [B]; Zelop, 2000 [B]).
- There is evidence that a short interval between pregnancies increases risk (Esposito, 2000 [C]; Shipp, 2001 [B]).
- The risk of uterine rupture is increased with induction of labor, regardless of gestational age (Delaney, 2003 [C]; Zelop, 2001 [C]).
- The risk of uterine rupture may be greater if the previous uterine incision was repaired with a single-layer uterine closure than if it was repaired with a two-layer technique (Bujold, 2002 [B]).

Conditions that have no documented increased risk

- A history of post-Caesarean section infection is unrelated to the incidence of uterine rupture (Nielsen, 1989 [C])
- Known overdistended uterus, e.g., twins, macrosomia, hydramnios (Bujold, 2001 [C]; Phelan, 1984 [C]; Strong, 1989 [D])
- Attempt at external version is not contraindicated after previous Caesarean delivery (Flamm, 1991 [D])

23. Prenatal and Lifestyle Education

Prenatal education is the primary tool used to transmit information to women about their pregnancies. Prenatal education serves to help reduce modifiable risk factors and to add to women's satisfaction by increasing their knowledge about pregnancy changes, fetal development, etc. Women who did not receive complete prenatal health behavior advice were 1.5 times more likely to deliver very-low-birth-weight (VLBW) infants (Sable, 1997 [C]).

A study done in an inner city showed that when obstetrical personnel are actively involved in counseling women about breastfeeding, more women will initiate breastfeeding and continue for a longer duration. Adequately trained health care staff can reinforce the counseling women have received in prenatal education sessions at each prenatal visit (Russell, 1999 [C]).
Visit 1

Education also provides information on the positive and negative impacts of the choices a woman makes. Identify which modifiable risk factors the patient is willing to address.

Counseling and education

• Course of care
 Review with the patient the nature of her visit schedule and upcoming assessments/interventions.

• Discuss fetal aneuploidy screening (see Annotation #24)

• Nausea and vomiting
 Nausea and vomiting in pregnancy is a common condition that affects 70%-85% of pregnant women, with hyperemesis gravidarum representing the extreme end of the spectrum in 0.5%-2% of pregnancies. Early treatment of nausea and vomiting in pregnancy is the goal to prevent progression to hyperemesis gravidarum.

 Symptoms of nausea and vomiting in pregnancy manifest before nine weeks gestation in virtually all affected women. If a patient experiences nausea and vomiting for the first time after nine weeks gestation, careful investigation of other causes should be considered.

 Few non-pharmacologic therapies have proven effective in preventing nausea and vomiting of pregnancy. Studies have shown women who were taking a multivitamin at time of conception were less likely to need medical attention for nausea and vomiting. Consuming different regimens of ginger also have shown significant benefit for some women.

 (American College of Obstetricians and Gynecologists, 2004 [R])

 Pharmacologic therapies have proven beneficial in treating nausea and vomiting of pregnancy. Initial monotherapy recognized is vitamin B6 alone or with doxylamine added. Other medications including many of the antihistamine H1 receptor blockers, phenothiazines and benzamides, have proven to be safe and efficacious in pregnancy. In refractory cases or in hyperemesis gravidarum, ondansetron (Zofran®) may be considered, as well as corticosteroids. However, corticosteroids continue to be used with caution as there is a known increased risk of oral clefts in the first 10 weeks of gestation (American College of Obstetricians and Gynecologists, 2004 [R]). Currently available data does not demonstrate convincing evidence of benefit (Yost, 2003 [A]).

• Nutrition/environmental risks
 Subject matter might include providing adequate nutrition for the growing fetus or the effects of toxins in the woman's environment.

• Physical activity
 For the active woman, education on exercise helps her to understand what she can safely continue to do and what modifications need to occur (Bungum, 2000 [B]); Kramer, 2006 [M]; Lewis, 2008 [R]). There is no evidence from randomized controlled trials demonstrating that exercise during pregnancy results altered outcomes; however, many other health benefits have been clearly demonstrated with a regular exercise program. (See ICSI Preventive Services for Adults guideline, 2009.)

• Physiology of pregnancy
 Prenatal education gives a woman information about how her body is changing and why, thus helping her to adjust to changes as they occur. Education during clinical visits, as well as community and worksite prenatal programs, provide an opportunity for her to learn about the early hormonal changes
and the growing fetus as the changes occur, and provide information on labor, birth and care after birth, at appropriate times (Zib, 1999 [C]).

- **Warning signs**
 Discuss signs and symptoms of miscarriage and ectopic pregnancy.

Visit 2
Follow up on any modifiable risk factors patient is addressing.

Counseling and education

- **Breastfeeding**
 Most parents make the decision about infant feeding during pregnancy. Prenatal education offers an excellent and well-timed opportunity to provide information to expectant parents about the benefits of breastfeeding. Those benefits include complete infant nutrition and fewer infant allergies and illnesses.

- **Fetal growth**
- **Nausea and vomiting (see visit 1 above)**
- **Physiology of pregnancy**
- **Review lab tests obtained at visit 1**

Visit 3
Follow up on any modifiable risk factors patient is addressing.

Counseling and education

- **2nd-trimester growth**
- **Physiology of pregnancy**
- **Quickening**

Visit 4
Follow up on any modifiable risk factors patient is addressing.

Counseling and education

- **Family issues**
 Discuss with the patient her plans for assistance after delivery

- **Gestational diabetes mellitus (GDM)**

- **Hospital length of stay**

- **Prenatal classes**
 Discuss with the patient the value of prenatal education

- **RhoGam**
Visit 5
Follow up on any modifiable risk factors patient is addressing.

Counseling and education
- Awareness of fetal movement (see Annotation #33)
- Fetal growth and development
- Physiology of pregnancy
- Preregistration
- Work

Visit 6
Follow up on any modifiable risk factors patient is addressing.

Counseling and education
- Contraception
- Episiotomy
- Labor and delivery issues
- Pediatric care
- Sexuality
- Travel

Visit 7
Follow up on any modifiable risk factors patient is addressing.

Counseling and education
- Contraception
- Discussion of postpartum depression
 A discussion about postpartum depression and available resources should be disseminated to women in late pregnancy. Those at high risk for postpartum depression should be identified and counseled. Also see Annotation #11, "Depression."
- Management of late pregnancy symptoms
- Postpartum care
- When to call the provider

Visits 8-11
Follow up on any modifiable risk factors patient is addressing.

Counseling and education
- Infant CPR
- Labor and delivery issues
24. Fetal Aneuploidy Screening

Counseling

Comprehensive counseling should be offered to all pregnant women regarding the different screening options and the benefits and limitations of each of the screening and diagnostic tests. Providers counseling patients need to take into consideration a variety of factors, including attitudes toward early first trimester detection, miscarriage, elective termination and having a child with Down syndrome or other birth defects (Berkowitz, 2006 [R]; Kupperman, 1999 [R]). The estimated risk of miscarriage following amniocentesis or chorionic villus sampling (CVS) has decreased over time. From 1998 to 2003 the adjusted amniocentesis loss rate was 1 in 370. This compares to a previous loss rate of 1 in 200. The decrease in loss rate from CVS has been greater, and there is no longer a statistically significant difference between the two (Caughey, 2006 [B]). Patients should be counseled that the rate of miscarriage is low with either amniocentesis or CVS, and there is no preference for one or the other.

It is preferable to provide patients with their numerical risk determined by the screening test, rather than a positive versus negative screening result using an arbitrary cutoff. It is often useful to contrast this risk with the general population risk and their age-related risk before screening (American College of Obstetricians and Gynecologists, 2007 [R]). It is suggested that the patient's provider make a concerted effort while counseling to convey the information in as simple terms as possible, and use a translator if needed. Additionally, meeting with a genetic counselor may be beneficial.

Although maternal serum alpha-fetoprotein (AFP) can be used in the second trimester to screen for fetal spina bifida, reported detection rates typically fall in the 80% range. However, an ultrasound at 18-20 weeks gestation when screening for fetal neural tube defects may be technically superior to serum testing detecting 96% of fetal neural tube defects in one series (Kooper, 2007 [B]).

Screening for Trisomy 21

The last decade has seen major shifts in the tests available and recommendations for screening for Down syndrome (Trisomy 21). Driving these changes has been a desire to shift invasive testing from the second trimester (amniocentesis) to the first trimester (chorionic villus sampling). Targeting high-risk individuals can also increase rates of detection while simultaneously decreasing rates of invasive testing in the overall population (American College of Obstetricians and Gynecologists, 2007 [R]).

Using maternal age of 35 as a sole indicator for testing will detect only 30% of Trisomy 21. Approximately 80% of Down syndrome babies are born to mothers under the age of 35 (Berkowitz, 2006 [R]).

The most widely available and used screening for Trisomy 21 is serum testing in the second trimester (15-18 weeks). Triple screen (AFP, hCG, Estriol) and quadruple screen (triple screen plus inhibin-A) are combined with maternal age to compute a pregnancy-specific risk for Trisomy 21. The quadruple screen improves the detection rates by 5%-7% over triple screen alone.

More recently available is first-trimester screening. First-trimester testing techniques of ultrasound nuchal translucency (NT) between 10 and 13 weeks or a combined test (NT, hCG, and PAPP-A) enhance the detection of Down syndrome compared with second-trimester testing with the triple or quadruple screen while reducing false-positives. (Conclusion Grade I: See Conclusion Grading Worksheet A – Annotation #24 (Fetal Aneuploidy Screening)) (Malone, 2005 [C]).
Other first-trimester sonographic markers, such as hypoplasia/absence of the nasal bone and tricuspid regurgitation, are being evaluated for their potential as screening tests for Down syndrome, but their clinical usefulness currently remains uncertain. If the nuchal translucency (NT) measurement equals or exceeds 3.0 mm, consideration should be given to immediate counseling of parents regarding invasive prenatal diagnosis as above this threshold, only 8% of patients will have negative screening results (Comstock, 2006 [C]). Also, if an NT measurement exceeds the 99% for gestational age or 2.5 mm, regardless of screening results consideration should be given to a "specialized/targeted" fetal anatomic evaluation due to an elevated risk of congenital heart defects (Simpson, 2007 [B]). PAPP-A levels that fall below the 5% expected for gestational age may also indicate a higher risk for subsequent fetal intrauterine growth restriction (IUGR) and preterm delivery, but no surveillance protocols have yet been validated (Spencer, 2008 [C]).

For each test individually, the detection rate calculated for Down syndrome, with a fixed screen-positive rate (similar to false-positive) of 5%, is (American College of Obstetricians and Gynecologists, 2007 [R]):

- triple screen 69%;
- quadruple screen 81%;
- PAPP-A and free B-hCG at 10 weeks 58%, at 12 weeks 53%; and
- NT 64%-70%.

Combining these tests produces higher detection rates while keeping a fixed screen-positive rate; combining NT with PAPP-A and free B-hCG yields 84%-87% detection rates (Berkowitz, 2006 [R]; Malone, 2005 [C]).

There are many different aneuploidy screening protocols currently available (Wenstrom, 2005 [R]). Sensitive and specific first- and second-trimester screening protocols are now widely available, and different health care organizations and individual clinicians use elements from various strategies to screen their patients for Down syndrome and other fetal abnormalities. Algorithms that incorporate the elements of the three principal aneuploidy screening strategies have been constructed. The work group is also cognizant that all strategies may not be available at all institutions.

First-trimester Down syndrome screening protocols can detect the majority of cases of other chromosomal aneuploidies. Addition of a Trisomy 18-specific risk algorithm in the second trimester achieves high detection rates for aneuploidies other than Down syndrome (Breathnach, 2007 [R]).

Several methods for combining first- and second-trimester screening reach higher detection rates for Trisomy 21 than either first- or second-trimester screening alone:

- Integrated (94%-96% detection)
- Serum integrated (85%-88% detection)
- Stepwise sequential (95% detection)
- Contingency (88%-94% detection)

Integrated screening: The patient is scanned for nuchal translucency determination and has a serum PAPP-A analysis performed between 10 and 13 weeks. The results of these tests are held, and the patient then has a quadruple screen test performed between 15 and 19 weeks. At that time, the results of all the studies, combined with risk assessment due to the patient's age, are used to present a single-risk figure. A variation in which the first-trimester PAPP-A test result is combined with a second-trimester quad test to provide a single-risk figure is called a serum integrated screening.

Stepwise sequential screening: The patient is scanned for nuchal translucency determination and has a serum PAPP-A analysis performed between 10 and 13 weeks. The results of these studies are combined with the patient's age-associated risk, and the patient is given a risk assessment for aneuploidy. The patient may choose at this time to undergo invasive testing (e.g., amniocentesis or chorionic villas sampling [CVS]), or a triple or quad screen at 15-19 weeks. If the patient has the second-trimester test, a new risk is assessed based on the results of her age and both the first- and second-trimester screening test results.
Contingency screening: The patient has the same first-trimester study described for the stepwise sequential test and is told the results. If the results are above an arbitrary cutoff, such as 1 in 50, she is offered CVS. If her results are below another arbitrary cutoff, such as 1 in 1,000, she is advised that no further testing is necessary. If the patient's risk falls between these two cutoffs, she is offered a quad screen after 15 weeks, and a new risk assessment is determined as in the stepwise sequential test.

As noted by Berkowitz, there is obviously no "right thing" for every woman to do. Patients and their caregivers have to decide what an individual patient desires (Berkowitz, 2006 [R]). The work group has provided the information on aneuploidy screening strategies to provide each clinician and health care organization with information on the range of options currently available.

<table>
<thead>
<tr>
<th>Name of Test</th>
<th>Week Test Used</th>
<th>Detection Rate (5% screen positive rate)</th>
<th>Screening Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPP-A and free beta-hCG with NT</td>
<td>10-13</td>
<td>82%-87%</td>
<td>Combined test</td>
</tr>
<tr>
<td>AFP, hCG and unconjugated estriol (triple screen)</td>
<td>15-19</td>
<td>69%</td>
<td>Single test</td>
</tr>
<tr>
<td>AFP, hCG, unconjugated estriol and inhibin-A (quad screen)</td>
<td>15-19</td>
<td>81%</td>
<td>Single test</td>
</tr>
</tbody>
</table>

Return to Annotation Table Return to Table of Contents
Aneuploidy Testing Integrated Screening Tool

- Patient and clinician make mutual decision to perform aneuploidy screening
- Perform quad screen (serum AFP, hCG, unconjugated estriol, and inhibin-A) between 15 and 19 weeks gestation
- Risk calculated from all available data, including age-associated risk
- Patient is available for screening between weeks 10 and 13 + 6 days gestation, and ultrasonography for nuchal translucency (NT) testing is available
- Perform NT assessment with PAPP-A and B-hCG at 10 weeks + 4 days to 13 weeks + 6 days gestation
- Results of all 3 tests are held until quad screen results are completed

*High risk of aneuploidy?
- Yes: Amniocentesis offered
- No: No further testing

* Each clinician/health care organization will establish cutoff values for low and high risk based on laboratory and patient particulars. One system used 1 in 200 as the cutoff.

Return to Annotation Table

Return to Table of Contents
Aneuploidy Testing Stepwise Sequential Screening Tool

1. Patient and clinician make mutual decision to perform aneuploidy screening.

2. Risk calculated from combined first-trimester screening tests.

3. Patient is available for screening between weeks 10 and 13 + 6 days gestation, and ultrasonography for nuchal translucency (NT) testing is available.

4. Patient consulted about first-trimester screening risk results.

5. Is chorionic villus sampling (CVS) indicated or requested?
 - Yes: CVS performed
 - No: Does patient want second-trimester screening?
 - Yes: Perform quad screen (serum AFP, hCG, unconjugated estriol, and inhibin-A) between 15 and 19 weeks gestation
 - No: Patient informed of aneuploidy risk calculated using both first- and second-trimester screening data.

6. *High risk of aneuploidy?*
 - No: Return to Annotation Table
 - Yes: Amniocentesis offered

* Each clinician/health care organization will establish cutoff values for low and high risk based on laboratory and patient particulars. One system used 1 in 200 as the cutoff.

Return to Annotation Table Return to Table of Contents
Aneuploidy Testing Contingency Screening Tool

1. Patient and clinician make mutual decision to perform aneuploidy screening.

2. Patient is available for screening between weeks 10 and 13 + 6 days gestation, and ultrasonography for nuchal translucency (NT) testing is available.

3. Perform NT assessment with PAPP-A and hB-hCG at 10 weeks + 4 days to 13 weeks + 6 days gestation.

4. Clinician/health care organization plan to use contingency screening method.

5. Risk calculated from combined first-trimester screening tests.

 High risk of aneuploidy
 - Chorionic villus sampling offered.

 Intermediate risk of aneuploidy
 - Perform quad screen (serum AFP, hCG, unconjugated estriol, and inhibin-A) between 15 and 19 weeks gestation.

 Low risk of aneuploidy
 - No further aneuploidy testing.

6. Patient informed of aneuploidy risk calculated using both first- and second-trimester data.

 High risk of aneuploidy?
 - No
 - Yes

 Offer amniocentesis.

* Each clinician/health care organization will establish cutoff values for low and high risk based on laboratory and patient particulars. One system used 1 in 200 as the cutoff.

** Each clinician/health care organization will establish cutoff values for low, intermediate and high risk based on laboratory and patient particulars. One system uses 1 in 1,000 as the cutoff between low and intermediate risk; 1 in 50 as the cutoff between intermediate and high risk.
25. Nutritional Supplements

Preconception

There is no clinical evidence that universal supplementation with a multivitamin in the preconception period is beneficial. As noted in Annotation #15, "Folic Acid Supplement," there is evidence to support a folate supplement of 400 to 800 micrograms daily beginning at least one month prior to conception. Several case control studies have also reported a reduced risk of NTD in women without a prior affected pregnancy who took daily multivitamins during the preconception period. The study analyzed the amount of folic acid in most of the multivitamins as greater than or equal to 0.4 mg (Werler, 1993 [C]). Another study concluded that since the advent of routine dietary fortification of folate, the magnitude of this benefit has likely been diminished (Mosley, 2009 [R]).

The Institute of Medicine (IOM) and CDC have issued recommendations on folic acid intake for women of childbearing age and women planning pregnancy who have previously had a pregnancy affected by a neural tube defect (Institute of Medicine, 2000 [R]). (See Annotation #15, "Folic Acid Supplement.")

Pregnancy

There is no clinical evidence that universal supplementation with a multivitamin in pregnancy is beneficial. Multivitamins are designed with the daily recommended doses of vitamins and occasionally minerals for a healthy adult. While multivitamins are beneficial for adults, they are not recommended for pregnant women because they contain insufficient amounts of some nutrients and higher than recommended amounts of others.

There is also no clinical evidence that universal supplementation with a prenatal vitamin in pregnancy is beneficial. Prenatal vitamin supplementation is recommended for multiple gestations, tobacco or chemical use, complete vegetarians and for women with inadequate diets despite counseling.

Randomized placebo-controlled trials and non-randomized controlled trials in pregnant women with a prior pregnancy affected by an NTD have demonstrated that folic acid supplements substantially reduce the risk of recurrent NTD (Kirke, 1992 [A]).

A randomized trial concluded that supplementation with vitamins C and E during pregnancy does not reduce the risk of preeclampsia in nulliparous women, the risk of intrauterine growth restriction, or the risk of death or other serious outcomes in their infants (Rumbold, 2006 [A]). Another study concluded combined vitamin C and E supplementation during pregnancy does not reduce the risk of preeclampsia, fetal or neonatal loss, small-for-gestational-aged infant, or preterm birth (Polyzos, 2007 [M]).

Women who have undergone bariatric surgery or who are vegans may have deficiencies in iron, vitamin B12, folate and calcium. Patients should be evaluated for nutritional deficiencies and vitamin supplementation where indicated (American College of Obstetricians and Gynecologists, 2005a [R]).

Omega-3 fatty acids are essential and can be obtained from the diet and from supplements. The requirements during pregnancy have not been established but likely exceed that of a non-pregnant state. Omega-3 fatty acids are critical for fetal neurodevelopment and may be important for the timing of gestation and birth weight, as well. Most pregnant women likely do not get enough omega-3 fatty acids because the major dietary source, seafood, is restricted to two servings a week. For pregnant women to obtain adequate omega-3 fatty acids, a variety of sources should be consumed: vegetable oils, two low-mercury fish servings a week, and supplements (fish oil or algae-based docosahexaenoic acid) (Greenberg, 2008 [R]).

Calcium supplementation is recommended for pregnant women with poor dietary calcium intake. Although current calcium intake recommendations for pregnancy are 1,200-1,500 mg per day, the median intake is 600 to 700 mg (Glenville, 2006 [R]).

Vitamin D supplementation in pregnancy is recommended for women who are complete vegetarians and others who have a lack of vitamin D-fortified milk in their diet. These women should receive 400 IU or
10 micrograms of vitamin D daily, especially during the winter months. In vulnerable communities (e.g., Southeast Asian women in northern climates), vitamin D supplementation during pregnancy reduces the risk of symptomatic neonatal hypocalcemia (*Maxwell, 1981 [A]*).

More recently, vitamin D testing and treatment of pregnant women is practiced by some providers. There is no clinical evidence that this supplementation affects pregnancy outcomes. However, exclusively breastfed infants whose mothers have low vitamin D stores are frequently vitamin D deficient, and thus at risk of nutritional rickets.

26. Viral Hepatitis

Hepatitis B

Universal screening for Hepatitis B surface antigen (HbsAg) is advised at the first prenatal visit. Those identified as high risk should be rescreened later in pregnancy. High-risk categories include:

- more than one sex partner in the previous six months,
- evaluation or treatment for sexually transmitted infection(s),
- recent or current injecting drug use, and
- HbsAg-positive sex partner.

(*Centers for Disease Control, 2007 [R]*)

It is estimated that there are 1.25 million people living in the U.S. who are chronically infected with Hepatitis B virus (HBV). Of these individuals, 30% acquired their infection in the perinatal period. In Minnesota, according to the MDH 2006 statistics, there are 15,345 persons living with HBV. There were 1,136 newly reported chronic cases – 434 were babies born to infected mothers.

The American College of Obstetricians and Gynecologists recommends universal screening of all pregnant women for Hepatitis B early in pregnancy. In addition, it recommends that infants of seropositive mothers receive Hepatitis B immune globulin (HBIG) immediately after birth (*American College of Obstetricians and Gynecologists, 2007 [R]*)

The Minnesota Department of Health requires reporting all positive HBV serology tests to the state agency (per online reporting form). (See Appendix G, "Perinatal Hepatitis B Prevention Program.") Each pregnant women who is HbsAg positive should have further evaluation, including additional lab work, to determine viral load. High viral counts increase the risk of prenatal transmission (*Lok, 2007 [R]*)

Perinatal transmission of Hepatitis B virus occurs if the mother has acute infection during late pregnancy or the early postpartum period or if the mother is a chronic Hepatitis B antigen carrier (*Levy, 1991 [D]*)

A combination of passive HBIG and active (Hepatitis vaccine) immunization of infants born to Hepatitis B surface-antigen-positive mothers affords very good protection to the infected infants (*Sangfelt, 1995 [C]*)

Pregnant women in high-risk categories for acquiring Hepatitis B infection should be offered vaccination. To avoid misinterpreting a transient positive HbsAg result during the 21 days after vaccination, HbsAg testing should be performed before the vaccination.

Hepatitis C

All pregnant women at high risk for Hepatitis C infection should be tested for Hepatitis C antibodies at the first prenatal visit. Women at high risk include those with a history of injecting drug use and those with a history of blood transfusion or organ transplantation prior to 1992.
No treatment is available for Hepatitis C-infected pregnant women apart from supportive care. No vaccine is available to prevent Hepatitis C transmission.

(Conte, 2000 [B])

27. Immunizations

Influenza

It is recommended that all pregnant women receive the influenza vaccination during influenza season (Saleeby, 2009 [R]). Immune system alterations during pregnancy may increase the likelihood of influenza complications such as pneumonia, particularly in the third trimester. Historical data from the 1918 and 1957 influenza A pandemics described a 50% mortality rate for influenza-induced pneumonia in pregnancy. In addition, the presence of fever, tachycardia and hypoxemia may be harmful to the developing fetus (Rodrigues, 1992 [R]). Universal vaccination with inactivated trivalent influenza vaccine is cost saving relative to providing supportive care alone in the pregnant population (Roberts, 2006 [M]).

Influenza vaccines made from inactivated/non-infectious viruses are considered safe at any gestational age (Nichol, 1995 [A]). If patient has hypersensitivity to eggs or to vaccine components, preservative-free vaccines are available for use in these populations. However, nasal spray influenza vaccines are made from live attenuated virus; administration of this form of an influenza vaccine is not recommended in pregnancy.

The United States Centers for Disease Control and Prevention have identified pregnant women as one of the high-risk groups for development of complications of H1N1. The CDC recommends consideration of antiviral therapy for confirmed, probable or suspected cases of H1N1 in such high-risk groups. The sensitivity of current rapid antigen testing has been reported as low as 30% with specificity as low as 58%. Therefore the decision to initiate antiviral therapy should be based upon the provider's judgment (Saleeby, 2009 [R]). Treatment with anti-influenza drugs should be started promptly and may reduce the progression to severe respiratory complications (Creanga, 2009 [C]; Jamieson, 2009 [D]).

Other risk factors for severe disease include obesity, low socioeconomic status, active or past use of tobacco, third trimester gestation and underlying cardiac disease.

Pregnant women who meet current case definitions for H1N1 infection should receive antiviral therapy with either oseltamivir or zanamivir, as both amantidine and rimantidine have been found to be teratogenic and embryotoxic when given at high doses in animal studies. Oseltamivir is the preferred medication (Saleeby, 2009 [R]).

(Tetanus/pertussis

If an urgent need for tetanus protection occurs during pregnancy, Td should be administered (Murphy, 2008 [R]). In special situations in which a pregnant woman has increased risk for tetanus, diphtheria or pertussis, the Advisory Committee on Immunization Practices acknowledges that health care providers may choose to administer Tdap instead of Td during pregnancy to add protection against pertussis, after discussing with the woman the theoretical benefits and risks for her, her fetus and the pregnancy outcome, before vaccination. Data to support this decision are scarce.

Pregnancy provides an excellent time to assess a woman's immunization status. If no urgent need arises, Td immunization should be delayed until the postpartum period. All postpartum women who have not received Td or Tdap in the last two years should receive Tdap prior to discharge after delivery. In addition, parents of infants, siblings of newborns, day care providers and others caring for the newborn should all be offered
Tdap if it has been two years or longer since their last Td. This also pertains to health care professionals who care for newborns and young infants. Vaccination of parents and household contacts of premature infants has been advocated to ensure that such persons receive Tdap (Shah, 2007 [R]).

Premature and low-birth-weight infants are at increased risk for severe and complicated pertussis. Pregnant women who never have been seen (i.e., have received no dose of pediatric DTP, DTaP or DT or of adult Td or TT) should receive a series of three vaccinations containing tetanus and diphtheria toxoids starting during pregnancy to ensure protection against maternal and neonatal tetanus. A single dose of Tdap can be substituted for one dose of Td during pregnancy, and then the series completed with Td. (See the ICSI Immunizations guideline.)

28. Fetal Heart Tones

Fetal heart tones should be identified at 10-12 weeks and thereafter.

No studies show improved perinatal outcome from identifying fetal heart tones, but expert opinion concurs that an occasional fetal demise may be found (with no other signs or symptoms) or an occasional cardiac anomaly might be detected. The primary indication for identifying fetal heart tones is the enormous psychological benefit to parents.

29. Ultrasound (Optional)

Universal screening

The work group acknowledges that prenatal ultrasound examination has become an almost universal feature of prenatal care. The Centers for Disease Control reported an ultrasound examination was performed in 67% of live births in the United States in 2002 (Martin, 2003 [R]). In the Routine Antenatal Diagnostic Imaging with Ultrasound Study (RADIUS), 85% of the patients had a recognized indication for ultrasound examination (Crane, 1994 [A]). The near-universal access to prenatal ultrasound examinations continues to spur an ongoing controversy regarding the use of routine ultrasound examination in screening low-risk pregnancies.

Several randomized control trials (RCT) have failed to show any consistent benefit to maternal or fetal outcome. Several of these studies show ultrasonography to be beneficial in detecting intrauterine growth retardation. Only one study showed a slight decrease in perinatal death in the routinely scanned group (P=0.11). (American College of Obstetricians and Gynecologist, 1997 [R]; Bakketeig, 1984 [A]; Bennett, 1982 [A]; Eik-Nes, 1984 [A]; Ringa, 1989 [R]; Secher, 1986 [C]).

The RADIUS study group concluded that screening ultrasonography did not improve perinatal outcome. This study excluded 40,214 out of 55,744 patients who registered to arrive at a randomized group of 15,530.

More recent literature suggests that routine ultrasound leads to a decrease in post-term pregnancy and a better ability to assess gestational age and multiple pregnancy (Caughey, 2008 [B]; Eik-Nes, 2000 [A]; Neilson, 2000 [M]).

One additional RCT showed a significantly lower perinatal mortality in a screened population that was screened at 16-20 weeks gestation. The decrease in perinatal mortality was mainly due to improved early detection of major malformations that led to induced abortion (Saari-Kemppainen, 1999 [A]). The Eurofetus study of 1999, the largest study of routine ultrasound examinations before 24 weeks gestation in a low-risk population detected 73.7% of major anomalies and 45.7% of minor anomalies for an overall detection rate of 44% (Grandjean, 1999 [D]).

An overall assessment of the existing evidence does not support the use of routine ultrasound examination in low-risk pregnancies as there currently is no proof of improved perinatal outcome. However, the work...
group acknowledges ongoing improvement in the detection of congenital anomalies using superior equipment in the hands of more experienced examiners. Indeed, both the Helsinki and RADIUS trials showed improved anomaly detection rates in hospital or tertiary centers. With higher anomaly detection rates, cost-effectiveness studies may soon demonstrate a rationale for routine ultrasound examination in some low-risk prenatal populations, though variations in anomaly prevalence rates and the cost of ultrasound examinations may still preclude a universal screening recommendation (Leivo, 1996 [A]).

Timing of ultrasound examination

The work group recognizes that the timing of a single obstetric ultrasound examination during routine prenatal care is also controversial. There are many indications for ultrasound examinations, and the optimal timing for each indication varies. For example, first-trimester ultrasound evaluations are preferable for pregnancy dating, whereas second-trimester examinations are superior for evaluations of fetal anatomy.

With these considerations in mind, the American College of Obstetricians and Gynecologists recommends if one screening ultrasound examination is performed, the optimal timing is at 18-20 weeks of gestation (American College of Obstetricians and Gynecologists, 2009b [R]). This timing provides satisfactory information for dating the pregnancy, allows good visualization of the fetal anatomy with concomitant detection of anomalies, and is performed at a time in the pregnancy when legal termination of the pregnancy is possible, if desired. There is no evidence to support the use of routine ultrasound examination in low-risk pregnancies after 24 weeks gestation (Bricker, 2008 [M]).

Consideration should be given to early sonography to confirm dating in cases of uncertain age or antecedent medical complications such as pregestational diabetes mellitus or previous complications (Caughey, 2008 [B]; Eik-Nes, 2000 [A]; Neilson, 2000 [M]).

Although maternal serum AFP can be used in the second trimester to screen for fetal spina bifida, reported detection rates typically fall in the 80% range. In contrast, routine ultrasound at 18-20 weeks gestation was shown in one series to detect 90% of fetal neural tube defects (Kooper, 2007 [B]).

Type of ultrasound examination

Three-dimensional/four-dimensional (3D/4D) ultrasound is considered investigational and is not routinely recommended at this time. Although there is no evidence of fetal harm from routine prenatal ultrasonography, the American College of Obstetricians and Gynecologists recommends against performance of ultrasound for no medical benefit (i.e., "keepsake videos") to be unjustified (American College of Obstetricians and Gynecologists, 2006b [R]).

30. Fundal Height

A measurement of the fundal height should be performed at each visit during the second and third trimesters of pregnancy (Lindhard, 1990 [A]).

Fundal height measurement is inexact and subject to inter- and intraobserver errors (Calvert, 1982 [C]).

However, the screening maneuver is simple, inexpensive and widely used during prenatal care. Furthermore, several studies have shown quite good sensitivity and specificity for predicting low birth weight for gestational age (Gardosi, 1999 [C]).
31. Progesterone

Progesterone use to improve pregnancy outcome has been under consideration for over 50 years. Early trials for reducing the rate of preterm delivery was fraught with small numbers. A recent randomized controlled trial found that treatment with 17 alpha-hydroxyprogesterone caproate 250 mg weekly from 16 to 36 weeks reduced the rate of recurrent preterm delivery less than 37 weeks in women at high risk from 54.9% to 36.3% (da Fonseca, 2009 [R]; Meis, 2003 [A]). In addition, perinatal morbidity – such as rates of IVH, NEC and need for supplemental oxygen and ventilatory support – was significantly reduced.

Prophylactic progesterone treatment to prevent preterm delivery should be considered in women at high risk for preterm delivery because of a history of a prior spontaneous preterm delivery caused by spontaneous preterm labor or premature rupture of the fetal membranes (American College of Obstetrics and Gynecology, 2008 [R]; Meis, 2005 [R]). A review of randomized trials (Mackenzie, 2005 [M]) concluded that there was a significant reduction in risk of delivery less than 37 weeks with progestational agents.

Treatment with progesterone for multiple gestations has not shown a reduction in the rate of preterm birth in women with twin gestations (Rouse, 2007 [A]). However, in women with a short cervix, treatment with progesterone may reduce the rate of spontaneous early preterm delivery (da Fonseca, 2009 [R]; da Fonseca, 2007 [A]).

32. Gestational Diabetes Mellitus (GDM)

Gestational diabetes is defined as a glucose intolerance occurring during pregnancy. Incidence is usually quoted as 2%-3%, with a range of .31%-37.4% noted (Stephenson, 1993 [R]). There is a higher prevalence in American Indian and Hispanic populations and a very low incidence among Caucasian teens (Garner, 1997 [A]).

In a recent randomized clinical trial, treatment of women with gestational diabetes reduced the rate of serious perinatal outcomes (defined as death, shoulder dystocia, bone fracture and nerve palsy) from 4% to 1%. Treatment included dietary advice, blood glucose monitoring and insulin therapy, if needed, for glycemic control. The study concluded that treatment reduced the rate of complications without increasing the rate of Caesarean delivery (Crowther, 2005 [A]).

Screening

Screening for gestational diabetes mellitus is optimally performed at 24 to 28 weeks gestation, due to pregnancy-related hormonal changes (Jovanic, 1985 [B]). Most practitioners use a 50 grams oral glucose load followed one hour later by the blood draw. Screening levels should be based on American College of Obstetricians and Gynecologists guidelines as stated in American College of Obstetricians and Gynecologists Technical Bulletin Number 200. If the glucose challenge test results fall outside the guideline, a 100 grams load followed by a three-hour glucose tolerance test should be performed (American College of Obstetricians and Gynecologists, 1994 [R]).

The guideline work group discussed the possibility that if the 140 mg/dL threshold were lowered, sensitivity would improve. Thresholds of 140 yield 90% of gestational diabetes with 15% of all patients screened having a glucose tolerance test (GTT). Lowering the threshold to 130 would identify almost all the gestational diabetes cases but would require 25% of women to have the GTT (Bonomo, 1998 [C]).

There have been investigations regarding selective rather than universal screening. Criteria for selective screening was fairly consistent, with obesity and family history of diabetes as the main reasons. Age greater than 30, (American College of Obstetricians and Gynecologists, 2001 [R] ; American Diabetes Association, 2010 [R]), previous macrosomic baby or baby with anomalies, stillbirth and glycosuria are other criteria for screening. Most studies agree that selective screening fails to detect 43%-50% of women with gestational diabetes.
diabetes (American College of Obstetricians and Gynecologists, 1994 [R]; Weeks, 1994 [C]). Currently there is a lack of consensus and insufficient evidence to assess the balance between the benefits and harms of screening for gestational diabetes mellitus. Universal screening of obstetrical patients for gestational diabetes is commonplace in the U.S. (U.S. Preventive Services Task Force, 2008 [R]).

High-risk for abnormal glucose tolerance

However, screening for abnormal glucose tolerance should be performed as early as the first prenatal visit if there is significant risk for undiagnosed type 2 diabetes mellitus. Risk factors include marked obesity, personal history of gestational diabetes mellitus (GDM), glycosuria, or strong family history of diabetes mellitus. Women with a history of GDM in a previous pregnancy have a 33%-50% risk of recurrence, some of which may represent undiagnosed type 2 diabetes mellitus (American College of Obstetricians and Gynecologists, 2001[R]; American Diabetes Association, 2010 [R]).

High risk (one or more of the following):

- BMI greater than 30 kg/m²
- Diabetes in first-degree relative
- History of glucose intolerance
- Previous infant with macrosomia (greater than 4,500 grams)
- Current glycosuria (previous impaired fasting glucose (IFG) with fasting BG 110-125 mg/dL)
- Previous gestational diabetes mellitus

Screening for these patients should occur at the initial antepartum visit or as soon as possible with a repeat screen at 24-28 weeks gestation if the initial screening is negative for gestational diabetes. (Kjos, 1999 [R])

The International Association of Diabetes and Pregnancy Study Groups (IADPSG), an international diabetes consensus group, with agreement from the American Diabetes Association (ADA), has recommended that women found to have diabetes mellitus at their initial prenatal visit by standard criteria, should be diagnosed with type 2 diabetes, not gestational diabetes mellitus (American Diabetes Association, 2010 [R]).

Hemoglobin A1c screening

A hemoglobin A1c higher than 6.5% suggests type 2 diabetes mellitus, but hemoglobin A1c below 6.5% should not be used as evidence against the diagnosis of gestational diabetes mellitus. Hence, hemoglobin A1c is not a useful screening test for detecting mildly abnormal blood glucose levels. There is some evidence a hemoglobin A1c more than two standard deviations above the mean may identify women at risk for delivering a large for gestational age (LGA) infant (Bevier, 1999 [A]; Radder, 2005 [B]).

Diabetes screening with history of GDM

Women with a history of gestational diabetes mellitus are at high risk for development of type 2 diabetes mellitus and should be appropriately followed (Kim, 2002 [M]; Peters, 1996 [B]; Smirnakis, 2005 [B]).

33. Awareness of Fetal Movement

There is no evidence that a formal program of fetal kick counts reduces the incidence of intrauterine fetal deaths. Patients should be instructed on daily identification of fetal movement at the 28-week visit.
Burden of Suffering

Reduction or cessation of fetal movements may precede death by a day or more (Sadovsky, 1973 [D]). Approximately 50% of antepartum late fetal deaths are not associated with any recognizable risk factor, and this is the rationale for screening all pregnancies in late pregnancy.

Accuracy of Screening Tests

There are no set counting criteria nor set values that can be universally applied to all antepartum patients when evaluating fetal movement (Davis, 1987 [R]). Variables include activity of an individual fetus, perception of a baby's movements by an individual mother, activity levels of individual fetuses, and perception among different women (Valentin, 1986 [D]).

Effectiveness of Early Detection

Two randomized control trials have addressed the question of whether clinical actions taken on the basis of fetal movement counting improve fetal outcome, with the largest involving over 68,000 women. These trials collectively provide no evidence that routine formal fetal movement counting reduces the incidence of intrauterine fetal death in late pregnancy (Grant, 1989 [A]; Neldam, 1983 [A]).

34. Cervix Exam

Cervical examinations at term are useful to diagnose abnormal presentation and to identify cervical dilation. Examinations do not increase the risk of rupture of membranes, rates of induction or Caesarean section, or risk of neonatal or maternal infections.

Stripping membranes at cervical examinations greater than or equal to 38 weeks reduces the rate of post-term (greater than 42 weeks) deliveries by up to 75%, significantly reduces the risk of induction of labor (8.1% versus 18.8%), and increases the likelihood of a gravida presenting to labor and delivery in the active phase of labor. A meta-analysis of available studies examining the use of membrane stripping among women of undetermined GBS colonization status found no significant increases in overall peripartum or perinatal infection rates among women who underwent this procedure (Boulvain, 2005 [R]). The greatest benefit is seen with unfavorable cervix in a primigravid patient. No increase in adverse outcomes is evident. The recommended method is digital insertion 2-3 cm above internal os, and sweeping circumferentially twice. Daily membrane sweeping after 41 weeks has been shown to be more effective than the use of prostaglandins in reducing postdate pregnancies (Allott, 1993 [A]; Magnann, 1999 [A]).

35. Confirm Fetal Position

Confirm fetal presentation by Leopold's and/or cervical examination at 36 weeks. Ultrasound may be used to confirm a questionable fetal presentation.

36. Group B Streptococcus Screening

Significance Testing

Proper culture techniques include sampling the introitus (lower vagina) and the perianal area. Selective broth media should be used. Sensitivity and specificity of such cultures in the late third trimester are estimated at 70.0% and 90.4%, respectively (Yancey, 1996 [C]).
DNA probe testing at time of delivery may identify those at highest risk of delivering an infant who may develop GBS sepsis \textit{(Bergeron, 2000 [C]; Reisner, 2000 [D])}. GBS, or \textit{Streptococcus agalactiae}, is recognized as an important cause of perinatal morbidity and mortality. About 7,600 cases of GBS sepsis occur in newborns in the United States and result in about 300 deaths per year. Invasive GBS disease in the newborn may manifest as sepsis, pneumonia or meningitis \textit{(Centers for Disease Control, 2002 [R]; Weisman, 1992 [D]; Zangwill, 1992 [R]).}

Vertical transmission of GBS during labor or delivery constitutes about 80% of GBS disease in the newborn \textit{(Weisman, 1992 [D]).}

Ten to thirty percent of pregnant women are colonized with GBS in the vaginal or rectal areas \textit{(Dillon, 1982 [D]; Edwards, 2002 [B]; Main, 2000 [C]; Regan, 1991 [D]; Spaetgens, 2002 [C]; Vergani, 2002 [C]).}

GBS is of concern with Caesarean delivery since intact amniotic membranes do not prevent vertical transmission. Although this risk for GBS vertical transmission with intact membranes does exist, for a patient undergoing Caesarean delivery prior to labor the risk is low. Intrapartum prophylaxis in this situation is not recommended. \textit{(Centers for Disease Control, 2002 [R])}

Prophylaxis

Some studies have demonstrated a reduction in the incidence of early-onset neonatal GBS disease when antibiotics were administered intrapartum to women with positive GBS colonization from prenatal cultures.

Care should be used in the selection of antibiotics for intrapartum prophylaxis to minimize the risk of increasing the incidence of antibiotic resistance \textit{(Edwards, 2002 [B]; Spaetgens, 2002 [C]).}

Management

The following protocol for the management of group B \textit{Streptococcus} (GBS) in pregnancy should be universally applied, based on obtaining cultures at 35-37 weeks gestation:

1. All pregnant women should be screened at 35-37 weeks gestation for anogenital GBS colonization unless patient has a positive urine culture for GBS earlier in pregnancy. All patients with a positive urine culture should be offered intrapartum prophylaxis. If the time from initial screening to delivery is greater than five weeks, the patient should be rescreened.

2. Culture techniques that maximize the recovery of GBS should be used.

3. Cultures from the lower vagina and rectum should be collected without speculum examination.

 At the time of screening, if the patient has a penicillin allergy with anaphylaxis, sensitivities for GBS should be obtained.

4. If the GBS culture is positive, the patient should be offered intrapartum prophylaxis with penicillin G (5 million units IV followed by 2.5 million units every four hours until delivery). Prophylaxis is not efficacious if initiated less than four hours prior to delivery.

5. Women with the following risk factors should receive intrapartum antibiotic prophylaxis regardless of GBS culture results:
 - Previous infant who had invasive GBS disease
 - GBS bacteriuria during this pregnancy
 - Intrapartum maternal temperature more than 38°C (more than 100.4°F) if results of GBS culture are unknown. For patients with suspected chorioamnionitis, broad-spectrum coverage is recommended.
6. In addition to the factors discussed under above, women with unknown GBS status should also receive intrapartum antibiotic prophylaxis when membranes have ruptured greater than 18 hours.

7. Alternative antibiotic recommendations:
 - Ampicillin should be avoided because it has been associated with an increase in resistant *E. coli* sepsis, particularly in premature newborns.
 - For penicillin-allergic women without history of anaphylaxis, a first-generation cephalosporin is the antibiotic of choice.
 - For penicillin-allergic women with a history of anaphylaxis, susceptibility testing is recommended for clindamycin (900 mg IV every eight hours) and erythromycin (500 mg IV every six hours). For organisms resistant to clindamycin or erythromycin, vancomycin should be used.
 - Oral antimicrobial agents should not be used to treat women who are found to be colonized with GBS during prenatal screening.

8. Patients undergoing elective Caesarean section should undergo routine GBS screening at 35-37 weeks for the possible circumstances when either membranes rupture or labor begins prior to the scheduled Caesarean delivery.

9. Threatened Preterm Delivery

Preterm delivery is an important risk factor for vertical transmission of GBS, but the uncertain nature of preterm labor and possible delivery makes antibiotic intrapartum prophylaxis decision-making complex.

The Centers for Disease Control have devised a suggested algorithm for managing this problem as there is insufficient evidence for a single approach in all circumstances. Once a patient has been identified with the onset of labor or with rupture of membranes at less than 37 weeks gestation to be at significant risk for imminent preterm delivery, one of the following three arms of the algorithm should apply:

- If there is no GBS culture result, the GBS vaginal and rectal culture should be obtained. While waiting for the results, intravenous penicillin therapy as recommended for term prophylaxis should be initiated. This therapy should be continued for at least 48 hours. If the GBS culture results are negative after 48 hours, the antibiotics may be stopped at the clinician’s discretion.

- If the GBS culture is known to be positive at the onset of preterm labor or rupture of membranes, the intravenous penicillin therapy as recommended for term prophylaxis should be continued for at least 48 hours. If the GBS culture is positive and the patient does not immediately deliver, intrapartum antibiotic prophylaxis should be repeated during the subsequent labor.

- If the GBS culture result is known to be negative, no GBS antibiotic prophylaxis is needed. If the interval from GBS culture to delivery is greater than four weeks, the GBS cultures should be repeated.

(Centers for Disease Control, 2002 [R])
Practices to Consider Discontinuing

Cervical Assessment

Digital examination by itself has been determined to be a poor predictor of future preterm delivery or preterm premature rupture of membranes. However, there may be a role for digital exams in concert with transvaginal cervical sonography (see Annotation #12, "Preterm Labor Education and Prevention," "Cervical Assessment") (Newman, 2008 [B]).

Pelvimetry

The evaluation of clinical pelvimetry during the prenatal period is of little value in predicting the occurrence of cephalopelvic disproportion (CPD) during delivery. In cases in which a previous Caesarean section had been performed for CPD, or for women who are at high risk for CPD, there may be some usefulness in performing clinical pelvimetry prior to the subsequent delivery (Hanzal, 1993 [C]).

Routine Urine Dipsticks and Routine Urinalysis

The conventional urine dipstick test is unreliable in detecting the moderate and highly variable elevations in albumin that occur early in the course of preeclampsia. (See the blood pressure discussion, Annotation #6.) Likewise, a "trace positive" urine dipstick for glycosuria has a reported sensitivity of only 23%-64% (Gribble, 1995a [C]; Gribble, 1995b [C]).

Routine Evaluation for Edema

The American College of Obstetricians and Gynecologists defines edema as a "generalized accumulation of fluid represented by greater than 1+ pitting edema after 12 hours of bed rest, or a weight gain of 5 lbs. or more in one week."

Edema has traditionally been an important diagnostic criterion for preeclampsia. However, by itself it is not useful to predict the development of preeclampsia because of the low specificity and sensitivity of this finding (Smith, 1993 [R]).

Routine Testing for CMV, Parvovirus, Toxoplasmosis

CMV

Selective testing of high-risk groups (day care workers, NICU nurses, adolescents with multiple partners or a history of sexually transmitted diseases) could be considered in order to advise them of their risk. Good hand washing and wearing gloves significantly reduces risk for this virus (Henderson, 1995 [R]).

Parvovirus

No routine testing is recommended. Affected pregnancies may result in fetal morbidity, but such outcomes are exceedingly rare (Guidozzi, 1994 [D]).

Toxoplasmosis

Universal screening is not recommended because of the low prevalence of the disease during pregnancy, the uncertain and costly screening, and the possible teratogenicity of treatment. It is recommended that efforts be directed at education of patients in prevention of this disease, which is now more commonly acquired in pregnancy through the handling of contaminated meat than from cat litter boxes (Tinelli, 1995 [R]).

Return to Annotation Table Return to Table of Contents
Routine Nutritional Supplements

There is no demonstrated benefit for universal prenatal supplementation of the following:

Multivitamins (A)* Magnesium (A)*
Amino acids/protein (A)* Pyridoxine (vitamin B6) (B)*
Iron (see Annotation #15) Zinc (A)*

High doses of vitamin A and molybdenum supplements are contraindicated in pregnancy. (A)*

*Letters in parentheses denote the grade of evidence for each nutrient.

There are no well-controlled studies demonstrating the efficacy of universal multivitamin supplements in pregnancy. A randomized control trial (RCT) to evaluate the effects of multivitamin supplements without folate versus placebo from preconception through the first trimester for women at risk for neural tube defect (NTD) demonstrated no decrease in NTD nor other salutary effects (MRC Vitamin Study Group, 1991 [A]).

Recent concern over the possible adverse effects of certain components of multivitamins would suggest against universal supplementation. Secondly, many patients experience significant gastrointestinal distress from such combination supplements. Finally, the cost of multivitamins can be a financial burden for some patients.

Balanced protein/energy supplementation results in increases in maternal weight gain and fetal growth. These increases do not appear larger in undernourished women, nor do they seem to confer long-term benefits to the child in terms of growth or cognitive development (Rush, 1980 [A]).

There is currently insufficient evidence to justify magnesium supplementation during pregnancy (Sibai, 1988 [R]).

Pyridoxine supplementation during pregnancy cannot be recommended on the basis of current evidence (Hillman, 1962 [A]).

The available data from controlled trials provide no convincing case for routine zinc supplementation during pregnancy (Simmer, 1991 [A]).

Routine Testing for Bacterial Vaginosis

The USPSTF does not recommend universal screening for bacterial vaginosis. However, women with a history of preterm labor may be advised that such a screening is necessary (U.S. Preventive Services Task Force, 2001 [R]).
Appendix A – Preconception Risk Assessment Form
(to be completed by patient)

Patient’s name: ____________________________________ Date:______________________

Because of the nature of your visit today, we ask that you answer the following brief questions so we may help you:

1. Will you be trying to get pregnant within the next year?
 - Y* - N - Unsure*

2. Do you think you are underweight or overweight?
 - Y* - N - Unsure*

3. Do you eat fewer than three meals per day or have fewer than five vegetables or fruit servings per day?
 - Y* - N - Unsure*

4. Are you on a special diet (e.g., vegetarian, weight loss, lactose-free)?
 - Y* - N - Unsure*

5. Do you use caffeinated supplements or beverages? (Three cups of coffee per day is the maximum recommended intake for pregnant women.)
 - Y* - N

6. Do you use tobacco?
 - Y* - N

7. Do you use alcohol?
 - Y* - N

8. Do you use street or recreational drugs (i.e., cocaine, speed, marijuana, etc.)?
 - Y* - N

9. Do you use any prescription or over-the-counter medications?
 - Y* - N - Unsure*

10. Have you had a urine/bladder/kidney infection in the last three years?
 - Y* - N - Unsure*

11. Have you had chicken pox?
 - Y - N* - Unsure*

12. Are you aware of toxoplasmosis and how this organism is transmitted (i.e., cat litter cleanup or food preparation)?
 - Y - N* - Unsure*

13. Are you exposed to chemicals or infections in your work?
 - Y* - N - Unsure*

14. Are you currently taking folic acid supplements?
 - Y* - N - Unsure*
 (Any woman attempting pregnancy should take a folic acid supplement of 0.4 mg daily. This vitamin reduces the risk of birth defects.)

15. Have you ever been physically, emotionally or sexually abused, or do you live with someone who is abusive?
 - Y* - N - Unsure*

16. Do you have a family history of birth defects or hereditary disorders?
 - Y* - N - Unsure*

17. Have you had three or more lost pregnancies before 14 weeks due to miscarriage or abortion?
 - Y* - N - Unsure*

18. Have you ever had a pregnancy loss after 14 weeks for genetic or unknown reasons?
 - Y* - N - Unsure*

19. Have you ever been screened (tested) for HIV?
 - Y* - N - Unsure*

20. Have you had periodontal disease?
 - Y* - N - Unsure*

21. Do you have a history of genital or oral herpes simplex virus (HSV)?
 - Y* - N - Unsure*

22. Have you been vaccinated for hepatitis?
 - Y* - N - Unsure*

If you answered “no” to question #19, HIV testing is recommended if you are considering pregnancy.

If you answered “yes” to question #19, what was the date of your last HIV test? _____________________

* Answers with asterisks may have health implications. If you need additional information, we recommend scheduling an appointment with your health care provider.
Appendix B – Workplace Environment/Lifestyle Risk Assessment Form (to be completed by patient)

<table>
<thead>
<tr>
<th>Patient's name: _________________________________</th>
<th>Date: ________________</th>
</tr>
</thead>
</table>

Occupation

What is your occupation?

<table>
<thead>
<tr>
<th>Does your employer accommodate flexible work hours?</th>
<th>Y N Unsure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a health professional available at work?</td>
<td>Y N Unsure</td>
</tr>
<tr>
<td>(If so, can your blood pressure be checked as needed?)</td>
<td>Y N Unsure</td>
</tr>
<tr>
<td>(If so, is there a place where you may rest?)</td>
<td>Y N Unsure</td>
</tr>
</tbody>
</table>

Workplace Exposure

<table>
<thead>
<tr>
<th>Are you exposed to lead or chemicals (handling or airborne)?</th>
<th>Y N Unsure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are you exposed to radiation?</td>
<td>Y N Unsure</td>
</tr>
<tr>
<td>Are you exposed to infections (hospital, lab work, day care, etc.?)</td>
<td>Y N Unsure</td>
</tr>
<tr>
<td>Is there a high level of stress at work?</td>
<td>Y N Unsure</td>
</tr>
<tr>
<td>Is overtime required?</td>
<td>Y N Unsure</td>
</tr>
</tbody>
</table>

Physical Requirements of Occupation

Do you:

- stand for prolonged periods of time? Y N Unsure
 - (If so, # of hours per day) ____________ hr.
- sit for prolonged periods of time? Y N Unsure
 - (If so, # of hours per day) ____________ hr.
- lift heavy objects repeatedly? Y N Unsure
 - (If so, # of pounds at a time) ____________ lb.

Nutrition

Are you on a special diet?	Y N Unsure

Do you have a history of an eating disorder?	Y N Unsure
Do you often skip meals?	Y N Unsure
Have you had a significant weight change in the past year?	Y N Unsure
Do you drink caffeinated coffee, pop or tea?	Y N Unsure
Do you eat fewer than five servings of fruits or vegetables per day?	Y N Unsure
Are you currently taking folic acid supplements?	Y N Unsure
Are you aware of toxoplasmosis and how this organism is transmitted (i.e., food preparation or cat litter cleanup)?	Y N Unsure

At Home

Do you have home remodeling plans?	Y N Unsure

Please list your hobbies:	________________________________

Describe your usual form of exercise: __

How many times a week do you exercise? _______________________

How long do your exercise sessions usually last? _______________________

Return to Table of Contents
Appendix C – Infectious Diseases in Pregnancy Screening Form

Patient’s name: ____________________________________ Date: ______________________

History

Letters refer to the interventions listed below.

1. Does the patient have a record of rubella immunity? ..Yes No^B
2. Has the patient been vaccinated for or had chicken pox? ...Yes No^A
3. Does the patient have a history of oral or genital HSV? ..Yes No
4. Is the patient known to be HIV positive? ..Yes^DEF No
5. Has the patient been in close contact with persons with known or suspected tuberculosis? ..Yes^C No
6. Is the patient an immigrant from Africa, Asia or Latin America? ...Yes C No
7. Has the patient been treated for IV drug use?..Yes CGH No
8. Has the patient been treated for alcoholism? ...Yes C No
9. Is the patient a member of a medically underserved, low-income population?...................Yes CDE No
10. Is the patient under 25 years old? ..Yes DE No
11. Does the patient (or her partner) have a history of STIs? ..Yes DEF No
12. Does the patient have a new sexual partner? ...Yes D No
13. Does the patient (or her partner) have multiple sexual partners? ...Yes DE No
14. Is the patient married? ..Yes No D
15. Is the patient seen today for STI screening?..Yes DEFGH No
16. Has the patient had sex for money? ..Unknown Yes DEFG No
17. Is the patient’s partner(s) HIV positive? ...Unknown Yes G No

Physical Examination

18. Is there cervical ectopy? ..Yes D No
19. Is there cervical friability? ..Yes DE No
20. Is there cervical erythema? ...Yes DE No
21. Is there a mucopurulent discharge? ...Yes DE No

Interventions

A. Test for varicella immune status
B. Test for rubella immune status
C. Screen for tuberculosis
D. Screen for chlamydia
E. Screen for gonorrhea
F. Screen for syphilis
G. Screen for HIV
H. Screen for Hepatitis B

Recommended interventions are per United States Preventive Services Task Force interpretive report of 1996 Centers for Disease Control guidelines.

Form completed by: _______________________________________(Init.) __________

Return to Table of Contents
Appendix D – Prenatal Genetic Risk Assessment Form (to be completed by medical staff)

Patient's name: _________________________________ Date: ____________________

1. Are you or the baby’s father of the following ethnic backgrounds?
 a. Jewish (Eastern European or Mediterranean background) or French Canadian?
 If yes, have you ever been tested for Tay-Sachs?
 b. Italian, Greek or Mediterranean?
 If yes, have you ever been tested for beta-thalassemia?
 c. Southeast Asian or Philippine?
 If yes, have you ever been tested for alpha-/beta-thalassemia?
 d. African American?
 If yes, have you ever been tested for sickle cell trait?
 e. Are you or the baby’s father Caucasian?
 If yes, have you ever been tested for cystic fibrosis?

2. Will you be 35 years or older when your baby is born?
 Will the baby’s father be 50 or older when the baby is born?
 Have you had three or more unplanned pregnancy losses?

3. Have you used any street drugs (including marijuana and cocaine) or chemicals
in the past six months or during this pregnancy?

4. If any close relatives have these hereditary medical problems, check “Y”; check “N” if a condition does not apply. For the following questions, “close” relatives are considered to include the grandparents, parents, aunts, uncles, first cousins, brothers, sisters, or children of yours or the baby’s father.
 a. Child with a known birth defect* or stillborn (* e.g., heart defect, cleft lip/palate, club foot)
 b. Chromosome abnormalities (e.g., Down syndrome, Turner syndrome, Klinefelter syndrome)
 c. Abnormalities of the brain or spinal column (e.g., hydrocephalus, spina bifida, meningomyelocele, microcephalus, mental retardation)
 d. Abnormalities of the bones or skeleton (e.g., osteogenesis imperfecta, achondroplasia, limb deformities, dwarfism)
 e. Inherited disorders of the blood (e.g., hemophilia, sickle cell trait or disease, thalessemia)
 f. Neuromuscular disorders (e.g., muscular dystrophy, myotonic dystrophy)
 g. Metabolic or chemical disorders (e.g., Tay-Sachs disease, cystic fibrosis, glycogen storage diseases, Hurler’s and Hunter’s syndromes)
 h. Skin disorders (e.g., neurofibromatosis, ichthyosis, tuberous sclerosis)
 i. Hereditary visual or hearing defects
 j. Unusual reactions to anesthetic agents
 k. Other inherited genetic diseases not listed above (e.g., Huntington’s chorea, polycystic kidney disease, congenital adrenal hyperplasia)

5. Do you have any serious health problems such as diabetes or epilepsy?

6. Were you ever on a special diet as a child or do you know of a family member with PKU (phenylketonuria)?

7. Do you or the father of the baby have a family history of psychiatric disease or mood disorders
 (e.g., manic depression, depression, anxiety disorder, schizophrenia)?

8. Do you or the father of the baby have any concerns about conditions that may be inherited?

Patient’s Signature: _________________________________ Date: ____________________

[] No known increased risk.
[] Positives reviewed; formal counseling not indicated.
[] Genetic counseling and/or amniocentesis have been offered and refused.
[] Genetic counseling and/or amniocentesis scheduled and/or referral done.
[] Undecided at this time.

Form completed by: _________________________________ (Init.) ____________________
Appendix E – Prenatal Record

Chart No. Service
Name Provided at:
D.O.B. Med. Grp.________ Provider_______

Gestational Age Assessment

Menses:
Interval: _____ Regularity: _____
LNMP: Certain?

Conception date:

Use of BC: Yes_____ No_____
Type: _______ if OCP – last taken ________

Pregnancy tests:
Type: Date: Result:

Quickening date:

Ultrasound:
Date: Size: Sonar EDD:

Physical Assessment Factors Considered (circle):
- Initial uterine size
- Uterus at umbilicus
- FHR by doppler
- FHR by fetoscope

EDD revision based on:

Past Obstetrical History

<table>
<thead>
<tr>
<th>Total Preg</th>
<th>Full-term</th>
<th>Premature</th>
<th>Ab/Induced</th>
<th>Abortions Spont.</th>
<th>Ectopics</th>
<th>Multiple Births</th>
<th>Living</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Del./Ab.</td>
<td>Sex</td>
<td>Name</td>
<td>Wt.</td>
<td>Hrs. in Labor</td>
<td>Type of Delivery</td>
<td>Weeks Gestation</td>
<td>Comments/Complications</td>
</tr>
</tbody>
</table>

Medical History

<table>
<thead>
<tr>
<th>Medical History</th>
<th>Pt (+/-)</th>
<th>Fam (+/-)</th>
<th>Notes</th>
<th>Medical History</th>
<th>Pt (+/-)</th>
<th>Fam (+/-)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic rhinitis/sinusitis</td>
<td></td>
<td></td>
<td></td>
<td>Malignancy, specify:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac murmur</td>
<td></td>
<td></td>
<td></td>
<td>Treatment for substance abuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital heart disease, valve(s) affected:</td>
<td></td>
<td></td>
<td></td>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Needs SBE prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other pulmonary disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyroid disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pylonephritis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood transfusion(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psych. Disorder, type: year:</td>
<td></td>
<td></td>
<td>Supra ovulation medications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombophlebitis, deep/DVT year:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embolism, year:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilepsy/seizure disorder</td>
<td></td>
<td></td>
<td>Pelvic trauma, year:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migraine headache</td>
<td></td>
<td></td>
<td>PID, year:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen disorder, specify:</td>
<td></td>
<td></td>
<td>Uterine anomaly/DES exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic back pain</td>
<td></td>
<td></td>
<td>Cervical incompetence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulcer/gastritis</td>
<td></td>
<td></td>
<td>Repetitive pregnancy loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gall bladder disorder</td>
<td></td>
<td></td>
<td>Abnormal Pap smear year:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis, specify:</td>
<td></td>
<td></td>
<td>Cervical carcinoma in situ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to Table of Contents
Laboratory

<table>
<thead>
<tr>
<th>Initial Labs</th>
<th>Date</th>
<th>Result</th>
<th>Reviewed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (Rh) Type</td>
<td>neg</td>
<td>pos</td>
<td></td>
</tr>
<tr>
<td>Antibody Screen</td>
<td>neg</td>
<td>pos</td>
<td></td>
</tr>
<tr>
<td>CBC & platelets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td>immune</td>
<td>not immune</td>
<td></td>
</tr>
<tr>
<td>RPR</td>
<td>Non-reactive</td>
<td>reactive</td>
<td></td>
</tr>
<tr>
<td>GC/Chlamydia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B antigen (Hep B)</td>
<td>neg</td>
<td>pos</td>
<td></td>
</tr>
<tr>
<td>HIV (with consent)</td>
<td>Non-reactive</td>
<td>reactive</td>
<td></td>
</tr>
<tr>
<td>Urine Culture</td>
<td>no growth</td>
<td>pos____</td>
<td></td>
</tr>
<tr>
<td>Pap Smear</td>
<td>normal</td>
<td>abnorm____</td>
<td></td>
</tr>
</tbody>
</table>

Immunizations & Chemoprophylaxis:

<table>
<thead>
<tr>
<th>Date</th>
<th>Lot #</th>
<th>Init.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Td Booster IM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influenza IM (must be ≥ 14 weeks EGA)</td>
<td>Lot #</td>
<td>Init.</td>
</tr>
</tbody>
</table>

16-18 Week Labs (when indicated)

<table>
<thead>
<tr>
<th>Date</th>
<th>Result</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal Serum Screen</td>
<td>normal</td>
<td>abnorm____</td>
</tr>
<tr>
<td>Amnio/CVS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karyotype Fetal Anomaly Screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amniotic Fluid (AFP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhoGAM IM (for amnio) 22 weeks</td>
<td>Lot #</td>
<td>Init.</td>
</tr>
</tbody>
</table>

24-28 Week Labs (when indicated)

<table>
<thead>
<tr>
<th>Date</th>
<th>Result</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes Screen</td>
<td>1 Hr.</td>
<td></td>
</tr>
<tr>
<td>GTT (if screen abnormal)</td>
<td>FBS</td>
<td>1 Hr.</td>
</tr>
<tr>
<td>D (Rh) Antibody Screen</td>
<td>neg</td>
<td>pos</td>
</tr>
<tr>
<td>RhoGAM IM</td>
<td>Lot #</td>
<td>Init.</td>
</tr>
</tbody>
</table>

32-36 Week Labs (when indicated)

<table>
<thead>
<tr>
<th>Date</th>
<th>Result</th>
<th>Reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTT (if screen abnormal)</td>
<td>FBS</td>
<td>1 Hr.</td>
</tr>
<tr>
<td>Group B Strep</td>
<td>Date</td>
<td>neg</td>
</tr>
</tbody>
</table>

Education/Counseling

<table>
<thead>
<tr>
<th>Educational Topics</th>
<th>Date</th>
<th>Init</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifestyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning Signs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course of Care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physiology of Pregnancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition and Supplements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Referral PTL Education Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV Counseling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Profile Form Completion:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Risk Assessment (preterm labor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Infectious Disease (ID) screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Genetic Screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Workplace Envir./Lifestyle Screening</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visit at 6-8 Weeks

- Fetal Growth
- Future Lab Testing
- Breast-Feeding
- Influenza IM for due date 11/1-5/31
- Body Mechanics

Visit at 10-12 Weeks

- PTL Signs
- Labor Class
- Family Issues
- Length of stay
- Gestational DM
- Rh Status

Visit at 22 Weeks

- Continuing Work
- Physiology of Pregnancy
- Fetal Growth/Movement
- Screen for Domestic Abuse
- PTL Risk Assessment
- Optional Reassess for ID risk
- Postpartum Depression
- Birth Control Plans

Visit at 25 Weeks

- Travel
- Sexuality
- Pediatric Care
- Episiotomy
- Labor and Delivery Issues
- Warning Signs/Preeclampsia
- Postpartum Care
- Birth Control Plans

Visit at 32 Weeks

- Attended/Attending Prenatal Classes
- Mgmt. of Late Pregnancy Signs & Symptoms
- Visits at 38-41 Weeks
- Postpartum Vaccinations
- Infant CPR
- Post-term Mgmt.
- Labor and Delivery Update
Appendix E – Prenatal Record

Routine Prenatal Care
Fourteenth Edition/July 2010

Substance Use

<table>
<thead>
<tr>
<th>Substance</th>
<th>Amt/Day PrePreg</th>
<th>Amt/Day Preg</th>
<th>Spouse/Partner Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco</td>
<td>Y N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>Y N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street Drugs</td>
<td>Y N</td>
<td></td>
<td>Specify:</td>
</tr>
</tbody>
</table>

Allergies

<table>
<thead>
<tr>
<th></th>
<th>NKDA</th>
<th>Latex allergy, specify reaction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Street Drugs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medication

<table>
<thead>
<tr>
<th>Medication (Rx and OTC)</th>
<th>Present Dosage</th>
<th>Date Began</th>
<th>Date Discontinued</th>
</tr>
</thead>
</table>

For VBAC Only (Init.______________) Date __________

<table>
<thead>
<tr>
<th>Record of previous lower segment incision attached to prenatal chart?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Record of low segment incision confirmed?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Patient counseled regarding VBAC risks?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Patient received written information about VBAC?</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Patient given informed consent for trial of labor after Cesarean section?</th>
</tr>
</thead>
</table>

Initial Physical Exam

<table>
<thead>
<tr>
<th>Initial Physical Exam</th>
<th>Performed by: _________ (Init.)</th>
<th>Date _______</th>
<th>PrePreg Wt: _______</th>
<th>Ht: _______</th>
<th>BMI: _______</th>
<th>BP: R: _______ or L: _______</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>HEENT</th>
<th>Normal</th>
<th>Abnormal, specify</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lungs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdomen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gyn Exam

<table>
<thead>
<tr>
<th>Gyn Exam</th>
<th>Normal</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulva</td>
<td>Condylomata</td>
<td>Lesions</td>
<td></td>
</tr>
<tr>
<td>Vagina</td>
<td>Inflamed</td>
<td>Discharge</td>
<td></td>
</tr>
<tr>
<td>Cervix</td>
<td>Inflamed</td>
<td>Lesions</td>
<td></td>
</tr>
<tr>
<td>Uterus, weeks</td>
<td>__________</td>
<td>Myoma(s)</td>
<td></td>
</tr>
<tr>
<td>Adnexa</td>
<td>Mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td>Hemorrhoids</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Postpartum Issues

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tubal literature given</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Risks, failure, and alternatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>discussed by:________________ (Init.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Date consent signed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If yes, attending classes?</th>
<th>Y N</th>
<th></th>
</tr>
</thead>
</table>

Return to Table of Contents

www.icsi.org
Prenatal Record

Problem List w/Plans

<table>
<thead>
<tr>
<th>Problems</th>
<th>Date</th>
<th>Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Preterm Labor Risk Yes No</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>2. Rh Neg Yes No</td>
<td>2.</td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
<td>5.</td>
</tr>
<tr>
<td>6.</td>
<td>6.</td>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
<td>7.</td>
<td>7.</td>
</tr>
<tr>
<td>8.</td>
<td>8.</td>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
<td>9.</td>
<td>9.</td>
</tr>
<tr>
<td>10.</td>
<td>10.</td>
<td>10.</td>
</tr>
</tbody>
</table>

Visit Flow Sheet

<table>
<thead>
<tr>
<th>Date</th>
<th>Wks</th>
<th>BP</th>
<th>Pre Preg wt.</th>
<th>FHR</th>
<th>Fundal Height</th>
<th>FM*</th>
<th>Position</th>
<th>Cerv Exam</th>
<th>Patient Concerns**</th>
<th>Other**</th>
<th>See PN+</th>
<th>Return Visit</th>
<th>Init</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

If more visits are necessary, use supplemental flow sheet

*Fetal Movement **If more space is needed, use progress notes on next page +Progress Notes

Initial Identification (Providers)

<table>
<thead>
<tr>
<th>Init</th>
<th>Name</th>
<th>Init</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

Routing Record

Initial chart copied & sent to hospital:
- Copy
- Fax
- Date
- Init.

Updated chart sent to hospital:
- Copy
- Fax
- Date
- Init.

Updated chart sent to hospital:
- Copy
- Fax
- Date
- Init.
- EMR
Supplemental Flow Sheet

<table>
<thead>
<tr>
<th>Date</th>
<th>Wks</th>
<th>BP</th>
<th>Wt.</th>
<th>Total Gain</th>
<th>FHR</th>
<th>Fundal Height</th>
<th>FM*</th>
<th>Position</th>
<th>Cerv Exam</th>
<th>Patient Concerns**</th>
<th>Other**</th>
<th>See PN+</th>
<th>Return Visit</th>
<th>Init</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

*Fetal movement **If more space is needed, use progress notes on next page +Progress Notes

See PN+ for progress notes on next page.
Appendix F – Blood Lead Screening Guidelines for Pregnant Women in Minnesota

Blood Lead Screening Guidelines for Pregnant Women in Minnesota

Prenatal lead exposure is of concern because it may have an effect on cognitive development and may increase delinquent and antisocial behaviors when the child gets older. Prenatal lead exposure may also reduce neonatal weight gain. In addition to fetal risk, lead may be a risk to the mother by causing an increase in blood pressure.

Lead is transferred from the mother to the fetus because the placenta is a weak barrier to the passage of lead. Therefore, it may be assumed that fetal blood contains the same concentration of lead as maternal blood. The Centers for Disease Control and Prevention (CDC) and the Minnesota Department of Health (MDH) consider 10 micrograms per deciliter (μg/dL) and above to be an elevated blood lead level for children.

In many cases, high levels of lead in pregnant women arise from maternal occupational exposure. However, other lead exposures may occur, such as: remodeling a home containing lead paint that allows lead dust to become airborne and inhaled; a family member's occupation or hobby resulting in “take-home” lead; using non-commercial home remedies or cosmetics that contain lead; using non-commercial glazed pottery for cooking; and pica behavior of the mother, such as eating soil or pieces of clay pots. There may also be exposure of the fetus to lead coming out of the mother’s bones. This may arise from long-term previous exposures of the mother even though lead exposure is not happening during the pregnancy. Lead may come out of maternal bones faster during pregnancy and lactation because of the mother’s and fetus’s need for calcium. A diet rich in iron and calcium may help reduce absorption of lead during pregnancy.

Not every woman is at risk for lead exposure, so a risk screening questionnaire should be used to decide when to test a pregnant, or potentially pregnant, woman for lead.

Blood Lead Screening Risk Questionnaire for Pregnant Women in Minnesota

Health-care providers should use a blood lead test to screen pregnant women if they answer, “yes” or “don’t know” to any of the following questions, or if they have moved to Minnesota from a major metropolitan area or another country within the last twelve months:

1. Do you or others in your household have an occupation that involves lead exposure?
2. Sometimes pregnant women have the urge to eat things that are not food, such as clay, soil, plaster, or paint chips. Do you ever eat any of these things—even accidentally?
3. Do you live in a house built before 1978 with ongoing renovations that generate a lot of dust (for example, sanding and scraping)?
4. To your knowledge, has your home been tested for lead in the water, and if so, were you told that the level was high?
5. Do you use any traditional folk remedies or cosmetics that are not sold in a regular drug store or are homemade? (See list on back.)
6. Do you or others in your household have any hobbies or activities likely to cause lead exposure? (See list on back.)
7. Do you use non-commercially prepared pottery or leaded crystal?
Sources of Lead

The most common sources of lead are paint, dust, soil, and water. Other sources include:

Traditional Remedies/Cosmetics

- **IN ASIAN, AFRICAN, & MIDDLE EASTERN COMMUNITIES:**
 - As a cosmetic or a treatment for skin infections or umbilical stump.
 - alkohl, kajal, kohl, or surma (black powder)

- **IN ASIAN COMMUNITIES:**
 - For intestinal disorders.
 - bali goli (round flat black bean)
 - ghasard/ghazard (brown powder)
 - kandu (red powder)

- **IN HMONG COMMUNITIES:**
 - For fever or rash.
 - pay-loo-ah (orange/red powder)

- **IN LATINO COMMUNITIES:**
 - For intestinal disorders.
 - arzabor (yellow/orange powder), also known as:
 - alkarcon, cora, coral, liga, maia luisa, and rueda
 - greta (yellow/orange powder)

- **IN SOUTH ASIAN (EAST INDIAN) COMMUNITIES:**
 - For bindi dots.
 - sindoor (red powder)
 - As a dietary supplement.
 - Ayurvedic herbal medicine products

Hobbies

- May also include some of the occupations listed in the right column.
- Bronze Casting
- Collecting, Painting or Playing Games with Lead Figurines
- Copper Enameling
- Electronics with Lead Solder
- Hunting and Target Shooting
- Jewelry Making with Lead Solder
- Liquor Distillation
- Making Pottery and Ceramic Ware with Lead Glazes and Paints
- Making Stained Glass and Painting on Stained Glass
- Melting Lead for Fishing Sinkers or Bullets or Lead Figurines
- Painting/Stripping Cars, Boats, and Bicycles
- Print Making and Other Fine Arts (When Lead White, Flake White and Chrome Yellow Pigments are Involved)
- Remodeling, Repairing, and Renovating Homes

Occupations/Industries

- Ammunition/Explosives Maker
- Auto Repair/Auto Body Work
- Battery Manufacturing and Repair
- Bridge, Tunnel and Elevated Highway Construction
- Building or Repairing Ships
- Cable/Wire Stripping, Splicing or Production
- Ceramics Worker (Pottery, Tiles)
- Construction
- Firing Range Work
- Glass Recycling, Stained Glass and Glass Work
- Jewelry Maker or Repair
- Lead Abatement
- Lead Miner
- Leaded Glass Factory Worker
- Manufacturing and Installation of Plumbing Components
- Manufacturing of Industrial Machinery and Equipment
- Melting Metal (Smelting)
- Metal Scrap Yards and Other Recycling Operations
- Motor Vehicle Parts and Accessories
- Occupations Using Firearms
- Paint/Pigment Manufacturing
- Pottery Making
- Production and Use of Chemical Preparations
- Radiator Repair
- Remodeling/Repainting/Renovating Houses or Buildings
- Removing Paint (Sandblasting, Scraping, Sanding, Heat Gun or Torch)
- Steel Metalwork
- Tearing Down Buildings/Metal Structures
- Welding, Burning, Cutting or Torching

Miscellaneous

- Antique/Imported Toys
- Chalk (Particularly for Snooker/Billiards)
- Imported Candy
- Imported Pottery
- Non-Commercially Prepared Pottery
- Non-Commercially Prepared Lead Crystal
- Some Children’s Jewelry
Appendix G – Perinatal Hepatitis B Prevention Program

Minnesota Department of Health

Perinatal Hepatitis B Prevention Program

What is perinatal transmission of hepatitis B?
Perinatal transmission of the hepatitis B virus (HBV) from mother to infant at birth is very efficient. The risk of infection may be as high as 70-90%. The HBV virus is transmitted by blood exposures. Up to 90% of perinatally infected babies who are not treated will develop a chronic hepatitis B infection. An estimated 15-25% of these individuals will ultimately die of liver failure secondary to chronic hepatitis, liver cirrhosis, or primary liver cancer. Treatment initiated within 12 hours after birth is up to 90% effective at preventing this serious infection.

Approximately 100,000 new hepatitis B cases are diagnosed in the U.S. each year. One third of the chronic infections are acquired perinatally or in early childhood through close household contact. The disease is largely preventable through treatment of infants born to infected mothers, as well as vaccination of individuals at risk for infection.

Since 1988, the Centers for Disease Control’s Immunization Practices Advisory Committee (ACIP) has recommended that all pregnant women be screened for hepatitis B infection. Testing should be performed with each pregnancy, regardless of history or previous testing results. The cost effectiveness of universal hepatitis B screening of pregnant women compares with other prenatal and neonatal screening programs (including hypothyroidism and phenylketonuria).

What is the perinatal hepatitis B prevention program in Minnesota?
The Minnesota Department of Health (MDH) implemented a perinatal hepatitis B prevention program in 1990. The goal of the MDH Perinatal Hepatitis B Prevention Program is to identify and treat infants born to HBV-infected mothers in an effort to prevent perinatally acquired infection. The benefits of this cost-effective strategy are:
• preventing potential long-term health consequences for the child, and
• eliminating a potential source of infection to others in the future.

To prevent perinatal transmission:
1. Obstetric patients are evaluated and screened for HBV infection early in each pregnancy regardless of prior test results and/or immunization status. HBsAg(surface antigen) serology testing is used for screening. If the patient is high risk, screening tests are repeated later in the pregnancy.
2. HBV-infected women receive further medical evaluation and follow-up.
3. Hepatitis B serology results are documented in the patient’s prenatal record. A copy of the original HBsAg lab is forwarded to the hospital to be placed prominently in the patient’s chart.
4. Pregnancies in HBV-infected women are reported to MDH within one working day of knowledge of the pregnancy.
5. Local public health nurses receive referrals from MDH and follow up with the expectant mother to educate her about her infection, and the implications and recommended preventive treatment for her baby.
6. Infants born to HBV-infected mothers receive:
 a. Hepatitis B immune globulin (HBIG) and HBV vaccine within 12 hours of birth,
 b. Additional doses of HBV vaccine to complete the series in accordance with the recommended schedule, and
 c. Post-vaccination serology
 All treatment is documented in the infant’s medical record and reported to local or state health departments.
7. Infants who do not demonstrate an immune response in post-vaccination serologic testing receive a second vaccine series.
8. HBV-infected infants are referred for further medical evaluation and follow-up.
9. Household members and other close contacts of the mother and infant are screened; HBV-susceptible individuals are vaccinated; and infected individuals receive further medical evaluation and follow-up.

Immunization Program
P.O. Box 64975
St. Paul, MN 55164-0975
651-201-5503 or 1-800-657-3970
www.health.state.mn.us/imunize
10/06
Perinatal Hepatitis B Birth Report

Hospitals should use this form to report perinatal hepatitis B births to the Minnesota Department of Health.

Fax to: (651) 201-5502

Person Completing: _________________________________

Phone: (_______) _______________________

Date Faxed:_____ / _____ / _____

Phone: (651) 201-5557 - if questions

<table>
<thead>
<tr>
<th>For women known to be HBsAg Positive:</th>
<th>For women whose HBsAg status is unknown:</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Administer hepatitis B immune globulin (HBIG) and hepatitis B vaccine, within 12 hours of birth, to all infants born to hepatitis B positive mothers.</td>
<td>☐ Perform a stat HBsAg screening test for all women admitted for delivery whose hepatitis status is unknown.</td>
</tr>
<tr>
<td>☐ If your hospital is having difficulty obtaining HBIG, please call MDH at (651) 201-5414.</td>
<td>☐ While test results are pending, the infant should receive hepatitis B vaccine within 12 hours of birth. If the mother’s HBsAg test is positive or unknown at discharge, the infant should receive HBIG before leaving the hospital. (Please check individual hospital orders/policies for your Institution’s guidelines as they may vary from MDH recommendations)</td>
</tr>
<tr>
<td>☐ FAX completed form to MDH at (651) 201-5502</td>
<td>☐ FAX completed form to MDH at (651) 201-5502</td>
</tr>
</tbody>
</table>

Name of hospital: _______________________________

City of hospital: ____________________________

Date sent: _____/_____/_____/

Mother’s hospital record no: __

Note: Report if mother is HBsAg(+) or status unknown at time of admission

Mother’s information

<table>
<thead>
<tr>
<th>Last name:</th>
<th>First name:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th>Phone: (_______)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>City:</th>
<th>Zip code:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Physician’s name:</th>
<th>Clinic name:</th>
</tr>
</thead>
</table>

Mother’s date of birth: / /

<table>
<thead>
<tr>
<th>Race:</th>
<th>Asian/Pacific Islander</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American Indian</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>Other</td>
</tr>
</tbody>
</table>

**Ethnicity:	Hmong	Hispanic	Vietnamese

<table>
<thead>
<tr>
<th>Other (specify):</th>
<th></th>
</tr>
</thead>
</table>

Infant’s Information

<table>
<thead>
<tr>
<th>Last name:</th>
<th>First: (If known)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date of birth: / /</th>
<th>Time of birth: AM/PM</th>
<th>Birthweight:</th>
<th>Sex: M F</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date of HBV1: / /</th>
<th>Time of HBV1: AM/PM</th>
<th>Date of HBIG: / /</th>
<th>Time of HBIG: AM/PM</th>
</tr>
</thead>
</table>

Brand: ☐ Engerix ☐ Recombivax

Important! Clinic where infant will receive HBV2:

<table>
<thead>
<tr>
<th>City of Clinic:</th>
</tr>
</thead>
</table>

Infant’s physician (Include phone if known):
Supporting Evidence:
Routine Prenatal Care

Original Work Group Members

- Dale Akkerman, MD
 Ob/Gyn, Work Group Leader
- Georgeanne Craft, CNM
 Nurse Midwifery, HealthPartners
- Barb Davenport, CNM
 Nurse Midwifery, HealthPartners
- Joanne Berkland, RN
 Nursing, HealthSystem Minnesota
- Dianne Eggen, RN, MPH
 Health Education, HealthSystem Minnesota
- John A. Jefferies, MD
 Ob/Gyn, HealthPartners
- Rick Carlson, MS
 Measurement Advisor, HealthPartners
- Joan Kreider, MD
 Ob/Gyn, HealthPartners
- Bruce Leppink, MD
 Family Practice, Family HealthServices Minnesota
- Chris Schroeder, RN
 Facilitator, ICSI

Released in July 2010 for Fourteenth Edition.
The next scheduled revision will occur within 24 months.

Return to Table of Contents

Contact ICSI at:
8009 34th Avenue South, Suite 1200; Bloomington, MN 55425; (952) 814-7060; (952) 858-9675 (fax)
Online at http://www.ICSI.org

Copyright © 2010 by Institute for Clinical Systems Improvement
Brief Description of Evidence Grading

Individual research reports are assigned a letter indicating the class of report based on design type: A, B, C, D, M, R, X.

A full explanation of these designators is found in the Foreword of the guideline.

II. CONCLUSION GRADES

Key conclusions (as determined by the work group) are supported by a conclusion grading worksheet that summarizes the important studies pertaining to the conclusion. Individual studies are classed according to the system defined in the Foreword and are assigned a designator of +, –, or ø to reflect the study quality. Conclusion grades are determined by the work group based on the following definitions:

Grade I: The evidence consists of results from studies of strong design for answering the question addressed. The results are both clinically important and consistent with minor exceptions at most. The results are free of any significant doubts about generalizability, bias, and flaws in research design. Studies with negative results have sufficiently large samples to have adequate statistical power.

Grade II: The evidence consists of results from studies of strong design for answering the question addressed, but there is some uncertainty attached to the conclusion because of inconsistencies among the results from the studies or because of minor doubts about generalizability, bias, research design flaws, or adequacy of sample size. Alternatively, the evidence consists solely of results from weaker designs for the question addressed, but the results have been confirmed in separate studies and are consistent with minor exceptions at most.

Grade III: The evidence consists of results from studies of strong design for answering the question addressed, but there is substantial uncertainty attached to the conclusion because of inconsistencies among the results from different studies or because of serious doubts about generalizability, bias, research design flaws, or adequacy of sample size. Alternatively, the evidence consists solely of results from a limited number of studies of weak design for answering the question addressed.

Grade Not Assignable: There is no evidence available that directly supports or refutes the conclusion.

The symbols +, –, ø, and N/A found on the conclusion grading worksheets are used to designate the quality of the primary research reports and systematic reviews:

+ indicates that the report or review has clearly addressed issues of inclusion/exclusion, bias, generalizability, and data collection and analysis;

– indicates that these issues have not been adequately addressed;

ø indicates that the report or review is neither exceptionally strong or exceptionally weak;

N/A indicates that the report is not a primary reference or a systematic review and therefore the quality has not been assessed.

Return to Table of Contents
References

Links are provided for those new references added to this edition (author name is highlighted in blue).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Journal/Media</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>American College of Obstetricians and Gynecologists – Committee Opinion. Screening for tay-sachs disease.</td>
<td>Number 318, October 2005b.</td>
<td>R</td>
</tr>
<tr>
<td>American College of Obstetricians and Gynecologists – Committee Opinion. Update on carrier screening for cystic fibrosis.</td>
<td>Number 325, December 2005d.</td>
<td>R</td>
</tr>
</tbody>
</table>

Return to Table of Contents

American College of Obstetricians and Gynecologists Practice Bulletin. Screening for fetal chromosomal abnormalities. Number 77, January 2007c. (Class R)

American College of Obstetricians and Gynecologists Practice Bulletin. Vaginal birth after previous Caesarean delivery. 104:203-12, Number 54, July 2004. (Class R)

Return to Table of Contents
Bevier WC, Fischer R, Jovanovic, L. Treatment of women with an abnormal glucose challenge test (but normal oral glucose tolerance test) decreases the prevalence of macrosomia. *Am J Perinatology* 1999;16:269-75. (Class A)

Boggess KA. Maternal oral health in pregnancy. *Obstet Gynecol* 2008;111:976-86. (Class R)

Bricker L, Neilson JP, Dowswell T. Routine ultrasound in late pregnancy (after 24 weeks’ gestation) (Review). *Cochrane Database Syst Rev* 2008;CD001451. (Class M)

Bujold E, Gauthier RJ. Should we allow a trial of labor after a previous Caesarean for dystocia in the second stage of labor? *Obstet Gynecol* 1991;98:1001-08. (Class A)

References

Comstock CH, Malone FD, Ball RH, et al. Is there a nuchal translucency millimeter measurement above which there is no added benefit from first trimester serum screening? *Am J Obstet Gynecol* 2006;195:843-47. (Class C)

Croen LA, Grether JK, Selvin S. The epidemiology of mental retardation of unknown cause. *Pediatrics* 2001;107:E86. (Class C)

Delaney T, Young DC. Spontaneous versus induced labor after a previous Caesarean delivery. *Obstet Gynecol* 2003;102:39-44. (Class C)

Desselberger U. Herpes simplex virus infection in pregnancy: diagnosis and significance. *Intervirology* 1998;41:185-90. (Class R)

Glenville M. Nutritional supplements in pregnancy: commercial push or evidence based? *Curr Opin Obstet Gynecol* 2006;18:642-47. (Class R)

Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. *Lancet* 2008;371:75-84. (Class R)

Gribble RK, Meier PR, Berg RL. The value of urine screening for glucose at each prenatal visit. *Obstet Gynecol* 1995b;86:405-10. (Class C)

Hart G. Syphilis tests in diagnostic and therapeutic decision making. *Ann Intern Med* 1986;104:368-76. (Class C)

Institute of Medicine. Weight gain during pregnancy: reexamining the guidelines. May 2009. (Class R)

Kagan KO, To M, Tsoi E, Nicolaides KH. Preterm birth: the value of sonographic measurement of cervical length. *BJOG* 2006;113:52-56. (Class R)

Kirke PN, Daly LE, Elwood JH. A randomised trial of low dose folic acid to prevent neural tube defects. *Arch Dis Child* 1992;67:1442-46. (Class A)

Kramer MS, McDonald SW. Aerobic exercise for women during pregnancy. *Cochrane Database Syst Rev* 2006;19:CD000180. (Class M)

Lemyre E, Infante-Rivard C, Dallaire L. Prevalence of congenital anomalies at birth among offspring of women at risk for a genetic disorder and with a normal second trimester ultrasound. *Teratology* 1999;60:244-40. (Class C)

Lok ASF, McMahon BJ. Chronic Hepatitis B. Hepatology 2007;45:507-39. (Class R)

Mullen PD. Maternal smoking during pregnancy and evidence-based intervention to promote cessation. Prim Care 26:577-89, 1999. (Class R)

Nagey DA, Zachary A. Preterm delivery and patient education. MMJ 1985;34:1006-07. (Class R)

National Collaborating Centre for Women's and Children's Health. Antenatal care: routine care for the healthy pregnant woman. October 2003. (Class R)

Neilson JP, Munjanja SP, Whitfield CR. Screening for small for dates fetuses: a controlled trial. BMJ 1984;289:1179-82. (Class C)

Neldam S. Fetal movements as an indicator of fetal well-being. Dan Med Bull 1983;30:274-78. (Class A)

Rasmussen KM. Is there a causal relationship between iron deficiency or iron-deficiency anemia and weight at birth, length of gestation and perinatal mortality? *J Nutr* 2001;131:590S-603S. (Class R)

Return to Table of Contents

Siega-Riz AM, Adair LS, Hobel CJ. Maternal underweight status and inadequate rate of weight gain during the third trimester of pregnancy increases the risk of preterm delivery. *J Nutr* 1996;126:146-53. (Class B)

Smith MA. Preeclampsia. *Prim Care* 1993;20:655-64. (Class R)

Spaetgens R, DeBella K, Ma D, et al. Perinatal antibiotic usage and changes in colonization and resistance rates of group B *streptococcus* and other pathogens. *Obstet Gynecol* 2002;100:525-33. (Class C)

Suonio S, Saarikoski S, Raty E, Vohlonene I. Clinical assessment of the pelvic cavity and outlet. *Arch Gynecol* 1986;239:11-16. (Class C)

Return to Table of Contents
Work Group's Conclusion: First-trimester testing techniques of ultrasound nuchal translucency (NT) between 10 and 13 weeks or a combined test (NT, hCG, and PAPP-A) enhance the detection of Down syndrome compared with second-trimester testing with the triple or quadruple test while reducing false-positives.

Conclusion Grade: I

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Design Type</th>
<th>Class</th>
<th>Quality</th>
<th>Population Studied/Sample Size</th>
<th>Primary Outcome Measure(s)/Results (e.g., p-value, confidence interval, relative risk, odds ratio, likelihood ratio, number needed to treat)</th>
<th>Authors’ Conclusions/ Work Group’s Comments (italicized)</th>
</tr>
</thead>
</table>
| Snijders et al., 1998 (NT) | Sens/Spec | C | + | 96,127 women with singleton pregnancies at 22 centers were tested for NT | - Median maternal age of population: 31 years
- Median gestational age of fetuses: 12 weeks (range 10-14 weeks)
- 234 of 326 (71.8%) cases of Down syndrome detected with a 4.4% (4209/94,476) false-positive rate using NT thickness > 95th percentile
- 268 of 326 (82.2%) cases detected with an 8.3% (7907/95,476) false-positive rate using an estimated risk cutoff of 1 in 300; PPV and NPV were 3.2% and 99.9% respectively
- 306 sonographers certified by the Fetal Medicine Foundation (FMF) | - Selection of the high-risk group for invasive testing by this method allows the detection of about 80% of affected pregnancies. However, even this method of risk assessment requires about 30 invasive tests for identification of one affected fetus. |
| Thilaganathan et al., 1999 (NT) | Sens/spec | C | ø | 11,398 women with a crown rump length between 38mm-84mm were scanned for nuchal translucency in a district general hospital from 1994-1998 | - Mean age of the tested population was 28.6 years
- 16 of 21 (76%) fetuses with Down syndrome were detected using a 1 in 200 risk cutoff; 4.7% false-positive rate; PPV and NPV were 3.3% and 99.9% respectively
- Sonographers certified by the FMF | - First-trimester nuchal translucency measurement is an effective screening test for Down syndrome in a routine obstetric population.
- With minimal additional training and resources, routine ultrasound staff are able to achieve good NT screening results. |
| Wald et al., 1997 (NT and combined test) | Meta-analysis | M | N/A | Results of three published datasets were combined: NT in 86 cases of Down syndrome, hCG and PAPP-A in 77 cases and 385 unaffected pregnancies, and 561 unaffected pregnancies with NT measurements | - For the combined test, a detection rate of 80% with a false-positive rate of 5% was estimated by combining the results of all three data sets
- For NT alone, a sensitivity of 64%, 5.4% false-positive rate and a 1.5% PPV with a 1 in 250 risk cutoff was estimated | - It appears using the combined test is better than second-trimester serum testing, though these estimates do not allow for an association between the markers and spontaneous fetal loss, an issue that needs to be clarified by further research.
- These results are a reasonable working estimate of the performance of testing using the combined test in the first trimester. It is only as a combined test that first trimester testing appears to be potentially more effective than second trimester testing. |
<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Design Type</th>
<th>Class</th>
<th>Quality</th>
<th>Population Studied/Sample Size</th>
<th>Primary Outcome Measure(s)/Results (e.g., p-value, confidence interval, relative risk, odds ratio, likelihood ratio, number needed to treat)</th>
<th>Authors' Conclusions/Work Group's Comments (italicized)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krantz et al., 2000 (combined test)</td>
<td>Sens/spec</td>
<td>C</td>
<td>ø</td>
<td>-Blood samples were collected between 9 and 14 weeks gestation for 10,251 women. NT measurement was done between 10 and 14 weeks gestation in 5,809 of the women.</td>
<td>-At a fixed 5% false-positive rate, a 91% detection rate was obtained for all women using the combined test. -For women under 35 years of age the combined test offered an 87.5% detection rate and 4.5% false-positive rate. -For women 35 years of age or older the combined test offered a 92% detection rate and 14.3% false-positive rate.</td>
<td>-First trimester testing using a combination of biochemistry and NT is feasible, results in improved detection compared with currently used second trimester protocols, and provides substantial advantages to clinicians and patients.</td>
</tr>
<tr>
<td>Orlandi et al., 1997 (combined test)</td>
<td>Sens/spec</td>
<td>C</td>
<td>ø</td>
<td>-Serum was collected prospectively in 2,010 singleton pregnancies and 744 of these women underwent NT measurement. Median maternal age was 32 years in unaffected pregnancies and 41.5 years in all 18 affected aneuploidy cases (11 Down syndrome).</td>
<td>-An 87% detection rate of Down syndrome with a 5% false-positive rate was shown using modelling with the age distribution of live births. -With same method, a 73% detection rate for NT alone with a 5% false-positive rate.</td>
<td>-The data in this study demonstrate that combined biochemical and ultrasound evaluation for Down syndrome in the first trimester of pregnancy yields a detection capability that may exceed that of current second trimester prenatal screening protocols. The potential for enhanced detection coupled to an earlier alert of fetal complications could represent a substantial advantage to both clinician and patient.</td>
</tr>
<tr>
<td>Wapner et al., 2003 (NT and combined test)</td>
<td>Sens/spec</td>
<td>C</td>
<td>ø</td>
<td>-8,816 singleton pregnancies in women of any age; days of gestation between 74 and 97 (approximately 10.5 to 14 weeks). -Blood samples for free β human chorionic gonadotropin (β-hCG) and pregnancy-associated plasma protein A (PAPP-A). -NT measurement</td>
<td>-8,205 patients in analysis; 61 had a fetus with trisomy 21 (prevalence of 1 in 135 pregnancies). Rates: Detection False-Pos Detection (at 1:270) (at 1:270) (at 5% false pos) Age only 80.3% 48.0% 32.8% Age+biochem 85.2% 23.2% 67.2% Age+NT 82.0% 11.9% 68.8% Age+biochem 85.2% 9.4% 78.7% Age<35 yrs 66.7% 3.7% 66.7% Age≥35 yrs 89.8% 15.2% 77.6% Based on ROC curves, combined test better than biochemical component alone (p<0.01) but not better than NT alone.</td>
<td>-First trimester screening for trisomy 21 on the basis of maternal age, maternal levels of free β human chorionic gonadotropin and pregnancy-associated plasma protein A, and measurement of fetal nuchal translucency has good sensitivity at an acceptable false-positive rate. NOTES: 40% of patients were 35-39 years; 10% were ≥40 yrs.</td>
</tr>
<tr>
<td>Author/Year</td>
<td>Design Type</td>
<td>Class</td>
<td>Quality</td>
<td>Population Studied/Sample Size</td>
<td>Primary Outcome Measure(s)/Results (e.g., p-value, confidence interval, relative risk, odds ratio, likelihood ratio, number needed to treat)</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| Wald et al., 2003 (NT and/or other tests) | Sens/spec | C | ø | -Women at 25 maternity centers for antenatal care between 8 and 14 weeks of pregnancy
-At booking visit: ultrasound, crown-rump length, ≥3 NT measurements
-Semen and urine samples from booking visit and time of second-trimester screening test (not analyzed until outcome of pregnancy was known)
-Diagnosis of Down syndrome based on second-trimester double, triple or quadruple test (policy was to avoid early intervention based on NT)
-Each pregnancy with Down syndrome (case) matched with 5 singleton unaffected pregnancies (controls); analyzed semen and urine (see NOTES) | -Analysis based on 102 Down syndrome pregnancies out of 42,712 singleton pregnancies recruited at 10-13 weeks gestation
-Overall detection rate = 63% (with 5% false-positive rate and based on NT and maternal age); observed false-positive rate for 85% detection rate = 19%
-Detection rates at 10 completed weeks (5% false-positive rate) for independent variables: age = 34%, NT = 51%, PAPP-A = 58% (all others <20%)
-Detection rates at 10 completed weeks (5% false-positive rate) for combinations of tests: PAPP-A + free-β-hCG + inhibin-A + AFP + uE3 + NT = 86%, PAPP-A + free-β-hCG + NT = 83% ("combined test"); best detection rate (5% false-positive) without NT was 78%
-False-positive rates for 85% detection rate (all include maternal age)
1st trimester:
combined test = 6.1%
NT (at 12-13 wks) = 25.1%
2nd trimester:
i ntegrated test* = 1.2%
quadruple test = 6.2%
triple test = 9.3%
double test = 13.1%
*includes NT + PAPP-A (1st trimester) AND quadruple test (2nd trimester)
Urinary markers were "useless" in 1st trimester; ITA was the most effective 2nd trimester marker but added little to screening performance
Screening performance in the 1st trimester of pregnancy was virtually the same as that in the 2nd trimester but both were less effective than integrating screening results from both trimesters into a single test. There is no evidence to support retaining the double test, the triple test or NT alone. The most effective and safe screening tests were:
1) integrated test
2) serum integrated test if no NT
3) quadruple test if no antenatal care until 2nd trimester
4) combined test if choice is to have screening in 1st trimester
NOTES: designed to compare 1st and 2nd trimester screening tests without bias caused by diagnosis and termination of some pregnancies and miscarriage of others; serum analyzed for AFT, free β-hCG, total hCG, uE3, PAPP-A, dimeric inhibin-A; urine analyzed for ITA and β-core fragment, total hCG, free β-hCG, and creatinine; no NT measurement in 9% of pregnancies – greater failure rate before 10 weeks and after 14 weeks; sonographer experience and ultrasound make and model also influenced ability to obtain NT measurement |
This section provides resources, strategies and measurement specifications for use in closing the gap between current clinical practice and the recommendations set forth in the guideline.

The subdivisions of this section are:

- Priority Aims and Suggested Measures
 - Measurement Specifications
- Key Implementation Recommendations
- Knowledge Resources
- Resources Available
Priority Aims and Suggested Measures

1. Increase the percentage of pregnant women who receive timely, comprehensive screens for testing risk factors. *(Annotation #4)*
 Possible measures of accomplishing this aim:
 a. Percentage of initial risk assessment forms completed within two visits of initiation of prenatal care.
 b. Percentage of pregnant women with interventions documented for identified risk factors.
 c. Percentage of pregnant women with documented preconception risk assessment/counseling.

2. Increase the percentage of pregnant women who receive timely, prenatal counseling and education as outlined in the guideline. *(Annotations #4, 12)*
 Possible measures of accomplishing this aim:
 a. Percentage of pregnant women who receive counseling and education before pregnancy.
 b. Percentage of pregnant women who receive counseling and education at each visit as outlined in the guideline.
 c. Percentage of pregnant women who receive counseling and education by the 28th-week visit.

3. Increase the number of first-trimester patients who have documentation of counseling about appropriate aneuploidy screening. *(Annotation #24)*
 Possible measure of accomplishing this aim:
 a. Percentage of pregnant women who receive counseling about aneuploidy screening in the first trimester.

4. Increase the percentage of VBAC-eligible women who receive documented education describing risk and benefits of VBAC. *(Annotation #22)*
 Possible measures of accomplishing this aim:
 a. Percentage of VBAC-eligible women who receive general education describing the risks and benefits of VBAC (e.g., the American College of Obstetricians and Gynecologists pamphlet on VBAC).
 b. Percentage of VBAC-eligible women who receive documented education describing the personal risks and benefits of VBAC (e.g., two or more previous Caesarean deliveries).
 c. Percentage of VBAC-eligible women who can describe the personal risks and benefits of VBAC.

5. Increase the rate of appropriate interventions for women with preterm birth (PTB) risk factors. *(Annotation #4, 12)*
 Possible measures of accomplishing this aim:
 a. Percentage of all identified PTB modifiable risk factors assessed that receive an intervention.
 b. Percentage of all identified modifiable and non-modifiable PTB risk factors that receive appropriate follow-up.

Return to Table of Contents
Measurement Specifications

Possible Success Measure #2c
Patient Reported Measure
Percentage of pregnant women who report to have received counseling and education by the 28th-week visit.

Population Definition
All women who are in the course of prenatal care and who are present for the 28th-week visit.

Data of Interest
\[
\frac{\text{# of yes answers on the survey}}{\text{total # of questions on returned surveys}}
\]

Numerator/Denominator Definitions
Numerator: The survey questions are:
1. Has your provider or someone from the clinic, community health program or worksite explained the benefits of breastfeeding? Yes No
2. Has your provider or someone from the clinic, community health program or worksite told you to report vaginal bleeding during your pregnancy? Yes No
3. Has your provider or someone from the clinic, community health program or worksite discussed with you attending or availability of childbirth classes? Yes No

Denominator: Total number of returned surveys

Response Rate
\[
\frac{\text{# of surveys returned per month}}{\text{# of surveys sent/given per month}}
\]

Method/Source of Data Collection
These data can be collected by a patient survey at the 28th-week visit. Since that visit uses a glucose tolerance test and there is a waiting time for completion of the test, this survey can be completed during that waiting time. The patient completes the survey by herself.

This may be collected on everybody, or a sample. If a sample is done, it is suggested that the data be collected on specific days (or times) to create a regular pattern for data collection. This pattern will allow for more consistent and regular data collection. The minimum sample size is 20 per month or 60 per quarter, or total population if you have fewer than 15 prenatal patients at 28th-week visit per month.

Time Frame Pertaining to Data Collection
The surveys can be collected monthly.

Return to Table of Contents
Possible Success Measure #4a
Percentage of VBAC-eligible women who receive general education describing risks and benefits of VBAC (e.g., the American College of Obstetricians and Gynecologists pamphlet on VBAC).

Population Definition
Women at a prenatal visit who are VBAC-eligible.

Data of Interest
\[
\frac{\text{# of VBAC-eligible women with documentation of education of the risks and benefits of VBAC}}{\text{total # of VBAC-eligible women whose medical records are reviewed}}
\]

Numerator/Denominator Definitions
Numerator: Documented is defined as any evidence in the medical record that a clinician provided education to the VBAC-eligible woman of the risks and benefits of VBAC.

Denominator: The number of women without any of the following contraindications to VBAC:
- Previous classic Caesarean delivery
- Some uterine surgery, e.g., hysterotomy, deep myomectomy, cornual resection, and metroplasty
- Previous uterine rupture or dehiscence
- Some maternal/fetal medical conditions, such as open neural tube defect and complete placenta previa
- Unknown uterine scar if there is a high likelihood of classical scar
- Rare psychological or social conditions that indicate the patient may not be a good candidate

Method/Source of Data Collection
Each month a minimum sample of prenatal visits is identified. This may be accomplished either by administrative search (CPT-4 codes 59510, 59400, or ICD-9 code V22.0), or by other case identification at the medical group. From that sample, it would be best to identify 20 VBAC-eligible women or total number in a month if fewer than 20.

Time Frame Pertaining to Data Collection
Suggested time frame for data collection is monthly.

Notes
It is recommended that VBAC is discussed for appropriate patients. Patient education, including a discussion of the risks and benefits associated with VBAC, should be documented.

Return to Table of Contents
Possible Success Measure #5a

Percentage of all identified PTB modifiable risk factors assessed that receive an intervention.

Population Definition

Women at a prenatal visit.

Data of Interest

\[
\frac{\text{# of modifiable risk factors in the denominator with documented intervention}}{\text{# of modifiable risk factors identified through screening and documentation in patient chart}}
\]

Numerator/Denominator Definitions

Numerator: Of factors in the denominator, those factors with a documented intervention at the visit. An intervention can be:
- referral,
- education,
- home health nurse visits,
- ultrasound,
- advice, or
- any documented plan for action/follow-up.

Denominator: The number of risk factors assessed as present during the screening

Method/Source of Data Collection

Obtain risk factors identified that are documented in patient chart. Determine whether an intervention was documented for each identified modifiable risk factor.

A chart abstraction is conducted to determine which risk factors have been identified and addressed. A sample chart abstraction form is included. The positive risk factor has an intervention if any of the following are documented: referral, education, home health nurse visits, case management, ultrasound, advice or any documented plan or discussion referring to the positive risk factor.

Time Frame Pertaining to Data Collection

These data may be collected weekly or monthly. Recommended sample size would be 20 per month or 5 per week.

Notes

The guideline recommends prompt intervention for modifiable risk factors identified in early pregnancy. This measure assesses if all positive risk factors have received appropriate follow-up. The definition of intervention and appropriate follow-up is deliberately broad and may be refined by a medical group to fit its improvement aims.
Key Implementation Recommendations

The following system changes were identified by the guideline work group as key strategies for health care systems to incorporate in support of the implementation of this guideline.

1. Use of simple prenatal forms and checklists can provide an inexpensive and effective means of improving implementation of periodic health maintenance and increase the likelihood that providers will put clinical evidence into practice.

2. Use of electronic medical records for computer-generated reminders can significantly improve provider acceptance and implementation of these recommendations.

(Cheney, 1987 [A]; Kirkham, 2005a [R])

Knowledge Resources

Criteria for Selecting Resources

The following resources were selected by the Routine Prenatal Care guideline work group as additional resources for providers and/or patients. The following criteria were considered in selecting these resources.

- The site contains information specific to the topic of the guideline.
- The content is supported by evidence-based research.
- The content includes the source/author and contact information.
- The content clearly states revision dates or the date the information was published.
- The content is clear about potential biases, noting conflict of interest and/or disclaimers as appropriate.

Resources Available to ICSI Members Only

ICSI has a wide variety of knowledge resources that are only available to ICSI members (these are indicated with an asterisk in far left-hand column of the Resources Available table). In addition to the resources listed in the table, ICSI members have access to a broad range of materials including tool kits on CQI processes and Rapid Cycling that can be helpful. To obtain copies of these or other Knowledge Resources, go to http://www.icsi.org/improvement_resources. To access these materials on the Web site, you must be logged in as an ICSI member.

The resources in the table on the next page that are not reserved for ICSI members are available to the public free-of-charge.
Resources Available

<table>
<thead>
<tr>
<th>*</th>
<th>Author/Organization</th>
<th>Title/Description</th>
<th>Audience</th>
<th>Web Sites/Order Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>American College of Nurse-Midwives</td>
<td>Information on midwifery, health during pregnancy and caring for baby</td>
<td>Public</td>
<td>http://www.mymidwife.org</td>
</tr>
</tbody>
</table>

* Available to ICSI members only.

[Return to Table of Contents](#)
<table>
<thead>
<tr>
<th>* Author/Organization</th>
<th>Title/Description</th>
<th>Audience</th>
<th>Web Sites/Order Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>March of Dimes</td>
<td>Stress and Prematurity</td>
<td>Public and professionals</td>
<td>http://www.marchofdimes.com</td>
</tr>
<tr>
<td>March of Dimes</td>
<td>Smoking During Pregnancy</td>
<td>Public and professionals</td>
<td>http://www.marchofdimes.com</td>
</tr>
<tr>
<td>March of Dimes</td>
<td>Preterm Labor and Birth: A Serious Pregnancy Complication</td>
<td>Public and professionals</td>
<td>http://www.marchofdimes.com</td>
</tr>
<tr>
<td>March of Dimes</td>
<td>Signs and Symptoms of Preterm Labor and What to Do</td>
<td>Public and professionals</td>
<td>http://www.marchofdimes.com</td>
</tr>
<tr>
<td>Mayo Clinic</td>
<td>Amniocentesis</td>
<td>Public and professionals</td>
<td>http://www.mayoclinic.com/health/amniocentesis/MY00155</td>
</tr>
<tr>
<td>Mayo Clinic</td>
<td>Chorionic Villus Sampling</td>
<td>Public and professionals</td>
<td>http://www.mayoclinic.com/health/chorionic-villus-sampling/MY00154</td>
</tr>
<tr>
<td>Mayo Clinic</td>
<td>Prenatal Testing</td>
<td>Public and professionals</td>
<td>http://www.mayoclinic.com</td>
</tr>
<tr>
<td>Minnesota Department of Health</td>
<td>Pregnant? Get Tested for Hepatitis B</td>
<td>Public and professionals</td>
<td>http://www.health.state.mn.us</td>
</tr>
<tr>
<td>Minnesota Department of Health</td>
<td>Perinatal Group B Streptococcus in Pregnant Women and Infants (GBS)</td>
<td>Public and professionals</td>
<td>http://www.health.state.mn.us</td>
</tr>
<tr>
<td>National Institute for Health & Clinical Excellence</td>
<td>Antenatal care, Routine Care for the Healthy Pregnant Woman</td>
<td>Public and professionals</td>
<td>http://www.nice.org.uk/guidance/index.jsp?action=byID&o=11947</td>
</tr>
</tbody>
</table>

* Available to ICSI members only.

Return to Table of Contents